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Background. Persons infected with human immunodeficiency virus (HIV) have increased rates of coronary
artery disease (CAD). The relative contribution of genetic background, HIV-related factors, antiretroviral medica-
tions, and traditional risk factors to CAD has not been fully evaluated in the setting of HIV infection.

Methods. In the general population, 23 common single-nucleotide polymorphisms (SNPs) were shown to
be associated with CAD through genome-wide association analysis. Using the Metabochip, we genotyped 1875
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HIV-positive, white individuals enrolled in 24 HIV observational studies, including 571 participants with a first CAD event during
the 9-year study period and 1304 controls matched on sex and cohort.

Results. A genetic risk score built from 23 CAD-associated SNPs contributed significantly to CAD (P = 2.9×10−4). In the final
multivariable model, participants with an unfavorable genetic background (top genetic score quartile) had a CAD odds ratio (OR)
of 1.47 (95% confidence interval [CI], 1.05–2.04). This effect was similar to hypertension (OR = 1.36; 95% CI, 1.06–1.73), hypercho-
lesterolemia (OR = 1.51; 95% CI, 1.16–1.96), diabetes (OR = 1.66; 95% CI, 1.10–2.49), ≥1 year lopinavir exposure (OR = 1.36; 95%
CI, 1.06–1.73), and current abacavir treatment (OR = 1.56; 95% CI, 1.17–2.07). The effect of the genetic risk score was additive to
the effect of nongenetic CAD risk factors, and did not change after adjustment for family history of CAD.

Conclusions. In the setting of HIV infection, the effect of an unfavorable genetic background was similar to traditional CAD
risk factors and certain adverse antiretroviral exposures. Genetic testing may provide prognostic information complementary to
family history of CAD.

Keywords. HIV infection; coronary artery disease; genetics; traditional risk factors; antiretroviral therapy.

A major long-term concern in HIV-positive persons includes
increased rates and premature onset of coronary artery disease
(CAD), stroke, and peripheral vascular disease, compared to
the general population [1–6]. The pathogenesis of CAD in HIV
is incompletely understood; a high prevalence of smoking,
proinflammatory and procoagulant mechanisms in the context
of immunosuppression [7–9], adverse viral effects on endothe-
lial and other cells, and deleterious metabolic effects such as
dyslipidemia and insulin resistance after exposure to certain an-
tiretroviral treatments have been implicated [2, 10–12].

CAD has a strong hereditary component [13, 14]. Genome-
wide association studies (GWAS) have identified common
genetic variants that contribute to the risk of CAD in the
general population [15, 16]. The Myocardial Infarction, Assess-
ment of Antiretroviral and Genetic Factors in Human Immu-
nodeficiency Virus Infection (MAGNIFICENT) Consortium
was established with the aim of assessing the relative contribu-
tion of traditional risk factors, HIV-related factors, antiretrovi-
ral regimen, and genetic background to CAD in HIV-positive
persons. We report here on 571 white HIV-positive persons
who experienced a first CAD event and 1304 HIV-positive
matched controls without CAD events in 24 HIV observational
studies. This represents the most comprehensive genetics–CAD
study undertaken in HIV-positive persons.

METHODS

Study Population, Inclusion Criteria
The MAGNIFICENT Consortium includes 24 HIV observa-
tional studies from Europe, the United States, Australia, and
Argentina (Supplementary Data). Participants gave written in-
formed consent for genetic testing. The ethics committee of
each study center approved the study. Applying a case-control
design, we defined cases as HIV positive, with a first CAD event
during the study period (1 April 2000 through 31 March 2009).
Controls were HIV positive and event free during the study
period. For each case, we aimed to select 3 controls from the

same cohort using risk-set sampling [17]. Controls were
matched only on sex, to allow analysis of the effect of relevant
nongenetic factors. Participants with cardiovascular events
prior to the study period were excluded. Because most previous
CAD GWAS in the general population were conducted in pop-
ulations of European descent [16], the present report is restrict-
ed to participants of European descent.

CAD Events
CAD events were validated by the treating physician and
defined according to the Data Collection on Adverse Events of
Anti-HIV Drugs (D:A:D) study and the MONICA Project of
the World Health Organization [2, 18]. CAD events included
definite myocardial infarction (MI); possible MI or unstable
angina; percutaneous coronary intervention including coronary
angioplasty and stenting; coronary artery bypass surgery; and
fatal CAD, which required evidence of CAD before death. All
CAD events in participating cohorts that occurred during the
study period were included.

Power Calculation, Genotyping, and Quality Control
We interrogated 23 single-nucleotide polymorphisms (SNPs)
with known CAD association in GWAS meta-analysis in the
general population [16].Using the ESPRESSO-CC Power Calcu-
lator [19], with projected 600 cases and 1800 controls, the study
had an 80% power to capture the effect of SNPs with minor
allele frequency (MAF) ≥0.1 and CAD odds ratio (OR) ≥1.25.
Genotyping was performed on the Metabochip (Illumina,
Eindhoven, the Netherlands, and Broad Institute, Harvard
University/Massachusetts Institute of Technology, Boston, MA),
a custom array of 196 725 SNPs from gene regions associated
with multiple metabolic/cardiovascular traits in GWAS [20].
The Metabochip was developed by leader groups in the field
to facilitate affordable genotyping of (1) recognized SNPs and
(2) the genetic regions that carried them, with the goal of
discovering causal variants associated with the recognized tag
SNPs. However, the study was not designed or powered for a
Metabochip-wide association study, which would require a
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significance threshold of P < 2.5 × 10–7 (ie, P = .05 divided by
the number of SNPs interrogated [196 725]).

Participants were filtered based on gender check (heterozy-
gosity testing) and cryptic relatedness. We used a modified Ei-
genstrat approach to identify and exclude population outliers
and to control for the possibility of spurious associations result-
ing from residual population stratification [21]. This method
derives the principal components of the correlations among
common (MAF > 5%) gene variants, which reflect population
ancestry, and corrects for those correlations in the subsequent
association tests by integrating the coordinates of the signifi-
cant principal component axes as covariates (Eigenstrat covari-
ates) in the models.

Nongenetic CAD Risk Factors
Covariates were selected a priori based on published CAD effect
and included in the final model regardless of statistical signifi-
cance: high total cholesterol (>6.2 mmol/L [22] or being on
lipid-lowering medication), low high-density lipoprotein (HDL)
cholesterol (<1.04 mmol/L) [22], diabetes mellitus (confirmed
plasma glucose level ≥7.0 mmol/L [fasting] or ≥11.1 mmol/L
[nonfasting] or taking antidiabetic medication) [23, 24],
hypertension (systolic blood pressure ≥140 mm Hg or diastolic

blood pressure ≥90 mm Hg or taking antihypertensive medica-
tion), smoking (never, past, or current), family history of CAD,
and age (per 5-year increments [25]). HIV-related covariates
were defined a priori, based on their contribution to CAD in
the D:A:D study [25]: CD4+ count and HIV RNA value (closest
to the event date), current antiretroviral therapy exposure,
current abacavir exposure, and cumulative exposure to lopina-
vir and indinavir. Because few patients had ≥2 years exposure
and the CAD effect of 1 year and ≥2 years of treatment was
equivalent, these drug exposures were considered as binary
covariates (ie, < or ≥1 year).

Missing Data
Certain covariates were unavailable or had >20% missing data
(Supplementary Table 3). Mostly, these data were systemati-
cally missing in entire cohorts, and therefore assumed to be
missing at random. This assumption was further checked by
comparing summary statistics on nonmissing values across
cohorts. There was no evidence that cohorts differed signifi-
cantly in the distribution of important confounders. Therefore,
single imputation using predictive mean matching was per-
formed to replace missing data for glucose, total and HDL
cholesterol, blood pressure, smoking, family history, duration

Figure 1. Summary of the models applied and sensitivity analyses performed. Abbreviations: CAD, coronary artery disease; HIV, human immunodeficien-
cy virus.
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of lopinavir and indinavir exposure, HIV RNA, and CD4+

count. Missing values were imputed using models with the
predictors age, sex, abacavir at time of event, region, and case/
control status [26]. Primary analyses utilized the imputed
dataset; sensitivity analyses utilized the nonimputed dataset
(Supplementary Figures 1B and 3).

Genetic Association Analyses
We built 2 a priori defined genetic risk scores using 23 SNPs
(or a proxy with r2 > 0.8) with known CAD association [16]
(Supplementary Table 2); (1) additive genetic score (number of
CAD risk alleles; heterozygous = 1, homozygous = 2; that is,
scores ranged from 0 to 46; higher scores indicate a higher
CAD risk; (2) additive weighted genetic score that takes into
account the effect size reported in the reference paper [16]. For
a SNP with, for example, a CAD OR of 1.2: reference allele = 0,
heterozygous = 0.2, homozygous risk allele = 0.4. The numbers
obtained for each of the 23 SNPs were added to create an indi-
vidual weighted genetic risk score.

Statistical Analysis
A summary of the models applied and sensitivity analyses per-
formed is provided in Figure 1. First, we tested the associations
of nongenetic factors using a conditional logistic regression
model [27]. Then, we tested the weighted genetic score plus the
5 Eigenstrat covariates and added them to the model, by divid-
ing study participants into 4 genetic score quartiles. We made a
post hoc test for an interaction between genetic score and tradi-
tional risk factors plus factors that contributed to CAD in the
D:A:D study [25]. The pseudo-r2 from each conditional logistic
regression model was used as an estimate of the percentage of
explained CAD variability in the study population. Analyses
were done using PLINK, R, SAS version 9.2 (SAS Corporation,
Cary, NC) and Stata version 12.0 (StataCorp LP, College
Station, TX).

Sensitivity Analyses
To assess the robustness of results, we repeated the final model
in participants with (1) complete (nonimputed) data for all co-
variates; (2) stringent case definition (definite MI, coronary
artery bypass surgery, and fatal CAD, plus corresponding con-
trols); (3) definite MI plus corresponding controls; (4) family
history of CAD excluded from the model.

Exploratory Genetic Association Analyses
First, all 196 725 SNPs present on the Metabochip were sepa-
rately tested for association with CAD by conditional logistic
regression. Second, to search for additional, weaker genetic as-
sociations in the regions containing known CAD-associated
genes or variants, we considered as a group all SNPs located
in/near (±5 kb) the 23 CAD-associated genes [16] and as a sep-
arate group the SNPs mapping to genes associated with traits

indirectly related to CAD (total, low-density lipoprotein, and
HDL cholesterol; diabetes mellitus; fasting glucose level; body
mass index [20]). The distribution of association P values was
compared between these groups and all other SNPs genotyped
on the Metabochip using the 2-sample Kolmogorov-Smirnov
test. Third, we evaluated a potential association of CAD events
with mitochondrial DNA (mtDNA) haplogroups.

Results

Study Population
We received DNA specimens from 702 cases and 1849 controls.
Twenty-one cases and 158 controls were excluded because of
registration in the cohort of the control after the event date of
their matched case (n = 124), insufficient DNA quantity or
quality (n = 42), sample administrative error (n = 7), nonwhite
self-reported origin (n = 4), event occurred after study ended
(n = 1), or missing genetic consent (n = 1). After genotyping
quality control, 97 cases were excluded because they were popu-
lation outliers in the Eigenstrat analysis (n = 89) or genetically
related with another participant (n = 8); corresponding con-
trols were also excluded. The final study population included
1875 participants (571 cases and 1304 controls).

Among the 571 cases, there were 273 definite MI, 48 possible
MI or unstable angina, 179 percutaneous coronary interven-
tions, 32 coronary artery bypass surgeries, and 39 fatal CAD.
Characteristics of participants are shown in Table 1. The
median age at first CAD event was 50 years. Cases were older
than controls and more likely to be smokers, and to have elevat-
ed cholesterol and glucose levels, a family history of CAD, and
current treatment with abacavir.

Nongenetic Factors Contributing to CAD
All covariates were significantly associated with the OR of a
first CAD event, except low HDL cholesterol (P = .29), being on
antiretroviral therapy at time of CAD event (P = .12), CD4+

count (P = .44), and HIV viremia (P = .88) (Figure 2). In the
complete case analysis (participants without missing covariate
data), the sample size was 720 individuals (183 cases, 537 con-
trols). For the imputed models, the sample size was 1875 (571
cases, 1304 controls). Conditional logistic regression models for
the imputed dataset were consistent with the complete case
analysis as regards direction and effect size of individual covari-
ates (Supplementary Figures 1B and 3). Therefore, the final
model and the results presented hereafter are based on the
imputed dataset.

CAD Odds Ratio According to Genetic Risk Score
In unadjusted analysis (Table 2), participants in the third and
fourth genetic risk score quartiles had an increased CAD OR,
compared to the first quartile (OR = 1.34; 95% confidence
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Table 1 Characteristics of the Cases and Controls at the Matching Date

Characteristic Cases, % Controls, %

Total No. 571 1304

Male sexa 91.1 91.3
Age, y, median (range) 50.0 (22–85.5) 45.0 (16.5–81.3)

Smoking

Never 22.8 31.4
Past 23.3 21.6

Current 53.9 46.9

Hypercholesterolemia 45.5 31.8
Low HDL cholesterol 43.1 39.3

Diabetes mellitus 19.4 13.6

Arterial hypertension 43.6 31.1
Family history of coronary artery disease 25.7 15.4

Receiving antiretroviral therapy 87.7 79.3

Currently on abacavir 25.6 17.6
Duration of treatment with indinavir, y, median (range) 0 (0–8.2) 0 (0–11.3)

Duration of treatment with lopinavir, y, median (range) 0 (0–8.0) 0 (0–8.7)

CD4+ T-cell count, cells/μL, median (range) 497 (11–1688) 500 (10–1905)
HIV RNA, log copies/mL, median (range) 3.8 (0–14.6) 3.9 (0–13.6)

HIV RNA

<50 copies/mL 63.2 60.2
<400 copies/mL 74.1 68.2

All values are percentages unless otherwise specified.

Abbreviations: HDL, high-density lipoprotein; HIV, human immunodeficiency virus.
a Cases and controls were matched by sex and cohort.

Figure 2. Contribution of traditional coronary artery disease (CAD) risk factors, HIV-related factors and weighted genetic score to CAD risk in multivari-
able analysis. Results are represented as the estimated effect and 95% confidence interval on the odds ratio of a first CAD event for genetic risk
score quartile (black dots), HIV-related variables (gray triangles), and traditional CAD risk factors (gray squares). Results for the final, fully adjusted model
(Supplementary Table 1A) and for the weighted genetic risk score (see Methods section) are shown. Abbreviations: ART, antiretroviral therapy; CAD, coro-
nary artery disease; CI, confidence interval; HDL, high-density lipoprotein; HIV, human immunodeficiency virus.
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interval [CI], 1–1.79; P = .05; and OR = 1.59; 95% CI, 1.19–
2.13; P < .01, respectively). In the final, multivariable model, the
additive and the weighted genetic score were associated with
the CAD odds (P = 1.3 × 10−4 and P = 2.9 × 10−4, respectively).
Cases were more likely to be in the upper 2 genetic score quar-
tiles compared to controls (P = .01; Supplementary Figure 2).
The effect of the weighted genetic score (CAD OR = 1.47 for
the fourth quartile, compared to first quartile; 95% confidence

interval [CI], 1.06–2.04; P = .02) was similar to the effect of es-
tablished CAD risk factors and certain antiretroviral medica-
tions (Figure 2 and Supplementary Table 1A). This included
family history (OR = 2.05; 95% CI, 1.54–2.74), hypertension
(OR = 1.36; 95% CI, 1.06–1.73), hypercholesterolemia (OR =
1.51; 95% CI, 1.16–1.96), diabetes (OR = 1.66; 95% CI, 1.10–
2.49), current smoking (OR = 2.48; 95% CI, 1.85–3.32), ≥1 year
lopinavir exposure (OR = 1.36; 95% CI, 1.06–1.73) and current
abacavir treatment (OR = 1.56; 95% CI, 1.17–2.07). An unfa-
vorable genetic background had an additive effect on the CAD
odds, without a significant interaction effect (P = .60; Figure 3
and Supplementary Table 1B).

Relative Contribution of Clinical, HIV-Related, and Genetic
Factors
In the final model, 7.5% of the CAD odds ratio variability was
explained by age, 3.1% by current smoking, 1.9% by family
history, and 0.9% by genetic score. Smaller percentages were
explained by traditional and HIV-related risk factors, for
example, 0.7% each by hypercholesterolemia, ≥1 year lopinavir
or current abacavir treatment; 0.5% each by diabetes or hyper-
tension (Figure 4). Addition of the genetic score to the clinical
model improved the fit of the model (χ2 = 6.28, P = .01).

Sensitivity Analyses
Models restricted to participants with nonimputed data, strin-
gent case definition (344 cases, 806 corresponding controls),
and definite MIs (273 cases, 651 corresponding controls)
showed similar results, except for a widening of confidence in-
tervals due to reduced sample size (Supplementary Figures 3–5).
Removing family history did not change the estimates for the
genetic score (Table 2, Supplementary Figure 6).

Exploratory Metabochip-wide Analyses, mtDNAVariants
None of the 196 725 SNPs on the array were associated with
CAD events in a metabochip-wide analysis after correction
for multiple testing (Supplementary Figure 7). The global

Table 2. Odds Ratio for Coronary Artery Disease According to Weighted Genetic Risk Score Quartile

Genetic Risk
Score Quartile

Genetic Risk Score and
5 Eigenstrat Covariates,

Unadjusted for
Nongenetic Covariates

Final Model,
With Family

History of CADa

Final Model,
Without Family
History of CADb

Quartile 2 vs quartile 1 1.27 (.95–1.69); P= .11 1.03 (.74–1.44); P= .84 1.04 (.75–1.44); P= .82

Quartile 3 vs quartile 1 1.34 (1–1.79); P= .05 1.25 (.90–1.74); P= .18 1.25 (.90–1.72); P= .18

Quartile 4 vs quartile 1 1.59 (1.19–2.13); P< .01 1.47 (1.06–2.04); P= .02 1.47 (1.06–2.03); P= .02

Data in parentheses are 95% confidence intervals.

Abbreviation: CAD, coronary artery disease.
a See Figure 2.
b See Supplementary Figure 7.

Figure 3. Coronary artery disease (CAD) risk according to genetic score
quartile and number of non-genetic CAD risk factors (odds ratio and 95%
confidence interval). Participants are stratified into 12 groups by weighted
genetic score quartile (quartile 1, 2, 3, and 4) and by the number of nonge-
netic risk factors (0–2, 3–4, or >4 nongenetic CAD risk factors). The first
group is the reference group (odds ratio = 1), ie, participants with 0–2 non-
genetic risk factors who are in genetic risk score quartile 1. The sum of all
nongenetic CAD risk factors is considered (presence of risk factor = 1,
absence of risk factor = 0), including traditional risk factors and additional
factors that contributed significantly to CAD risk in the D:A:D study [25],
ie, age, past smoking, exposure ≥1 year to lopinavir, exposure ≥1 year to
indinavir, current exposure to abacavir. Abbreviations: CAD, coronary
artery disease; CI, confidence interval; HIV, human immunodeficiency
virus; Q, quartile.
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distribution of association P values was not significantly differ-
ent between the 5070 SNPs within CAD-associated genes, the
36 863 SNPs within genes with a potential indirect CAD associ-
ation [16], and the rest of the SNPs on the Metabochip, indicat-
ing an absence of enrichment of potentially interesting
association signals in the first 2 groups. The mtDNA coverage
of the Metabochip was found to be unreliable, with an excess of
seemingly polymorphic (heteroplasmic) mtDNA SNPs; 80% of
the participants displayed ≥1 heteroplasmic SNP out of 135
SNPs mapped to mtDNA (total, 5604 heteroplasmic calls;
Supplementary Results, Supplementary Figure 8). Results were
also inconsistent with the complete mtDNA genomes of 2 par-
ticipants that had been previously Sanger sequenced [28], with
47% unmatched SNPs (64/135 positions, Supplementary
Table 4).

DISCUSSION

This is the first large-scale analysis of clinical, HIV-related, and
genetic risk factors that contribute to CAD in HIV-positive
persons. Our findings suggest that the effect of an unfavorable
genetic background on CAD events is comparable to well-
established traditional risk factors and certain antiretroviral

regimens. The genetic risk score, which was defined a priori
and captures the joint effect of 23 common SNPs with known
CAD association in the general population [16], remained in-
dependently associated with CAD after considering multiple
nongenetic factors and in sensitivity analyses, suggesting that
the effect is robust.

In this HIV-positive study population, genetic background
explained a larger proportion of the CAD variability than did
diabetes, hypertension, or dyslipidemia, but a smaller propor-
tion than age or current smoking. Our exploratory analyses
using the metabochip did not provide any novel insight about
the genetics of CAD in HIV-positive persons. This was expect-
ed, as the study was designed to assess a panel of candidate
SNPs with validated CAD association and was not powered for
metabochip-wide discovery of novel gene variants.

Family history and genetic risk score contributed to CAD to
a similar degree, and the effect of the genetic score did not
change after adjusting for family history. This suggests that
family history, which may reflect genetic background, but also
environmental, social, and lifestyle factors shared among family
members [29, 30], and assessment of common genetic variants
capture independent, complementary effects on CAD in HIV-
positive persons. This is consistent with the results by Ripatti

Figure 4. Coronary artery disease (CAD) variability explained by traditional risk factors, human immunodeficiency virus–related factors and genetic back-
ground. Variability in the CAD odds ratio explained by the final model: 21.1%. Of this, age: 7.5%, current smoking: 3.1%, past smoking: 0.4%, high total
cholesterol: 0.7%, hypertension: 0.5%, diabetes: 0.5%, low high-density lipoprotein cholesterol: 0.1%, family history of CAD: 1.9%, genetic risk score:
0.9%, current antiretroviral therapy: 0.2%, current abacavir: 0.7%, lopinavir (≥1 year): 0.7%, indinavir (≥1 year): 0.3%, HIV load: 0%, CD4+ count: 0%.
Abbreviations: ABC, abacavir; CAD, coronary artery disease; HDL, high-density lipoprotein; IDV, indinavir; LPV, lopinavir.
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and colleagues, a large study in the general population that as-
sessed a similar genetic score [31].

An unfavorable genetic background had an effect on CAD
comparable to certain antiretroviral agents known to increase
cardiovascular risk. Because the magnitude of the CAD effect of
certain drugs (eg, abacavir) is unresolved [32], we based selection
of drug exposure covariates on the D:A:D study, the largest
ongoing consortium of observational HIV studies [2, 25]. The in-
creased CAD risk associated with lopinavir and indinavir is con-
sistent with their previously recorded metabolic effects [2, 33].
Low CD4+ count or detectable HIV viremia at the time of the
CAD event were not associated with CAD in our dataset, con-
sistent with the D:A:D study [34]. Other authors have noted
adverse effects of immunosuppression on CAD risk [35, 36].

Strengths of this study include the assembly of a large study
population of HIV-positive persons who experienced a first CAD
event during a 9-year study period; rigorous quality control of the
genotyping data; exclusion of population outliers and correction
for residual population stratification; physician validation of all
CAD events; analysis of only SNPs and nongenetic covariates with
established CAD association; and robust results in sensitivity anal-
yses. Our study was limited by the effort required to establish the
MAGNIFICENT Consortium. Even though HIV-positive popula-
tions are aging [37], the number of HIV-positive persons who
have experienced CAD events is limited and not all studies include
consent for genetic testing. Because demonstration of the CAD
effect of 13 of the 23 SNPs required meta-analysis of >86 000 par-
ticipants from multiple GWASs in the general population [16],
additional CAD-associated SNPs with modest effect sizes may
emerge from HIV-positive study populations larger than the
MAGNIFICENT consortium. At the time of study design,
GWAS-based CAD associations were essentially limited to white
populations, so we restricted the present analysis to white partici-
pants; our findings may not be applicable to other populations.

Our findings suggest that genetic testing may provide prog-
nostic information complementary to that afforded by family
history, traditional risk factors, and antiretroviral regimen. Par-
ticularly in high-risk patients, knowledge of a deleterious genetic
CAD predisposition might further emphasize the rationale for
aggressive risk factor modification and selection of a CAD-
neutral antiretroviral regimen to achieve HIV control. The clini-
cal value of genetic testing will rely on demonstration of im-
proved CAD risk stratification in prospective studies, as shown
by Ripatti in the general population [31, 38]. This was beyond the
scope of the case-control design of our consortium. Areas for
future investigation include addition of genetic score to, for
example, Framingham or D:A:D score in prospective HIV study
settings; comparison of genetic CAD prediction in HIV-positive
versus HIV-negative populations; and integration of genetic
background and plasma biomarkers of inflammation, coagula-
tion, and endothelial function to predict CAD in HIV [7, 39].
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