5,426 research outputs found
Galaxy clusters and microwave background anisotropy
Previous estimates of the microwave background anisotropies produced by
freely falling spherical clusters are discussed. These estimates are based on
the Swiss-Cheese and Tolman-Bondi models. It is proved that these models give
only upper limits to the anisotropies produced by the observed galaxy clusters.
By using spherically symmetric codes including pressureless matter and a hot
baryonic gas, new upper limits are obtained. The contributions of the hot gas
and the pressureless component to the total anisotropy are compared. The
effects produced by the pressure are proved to be negligible; hence,
estimations of the cluster anisotropies based on N-body simulations are
hereafter justified. After the phenomenon of violent relaxation, any realistic
rich cluster can only produce small anisotropies with amplitudes of order
. During the rapid process of violent relaxation, the anisotropies
produced by nonlinear clusters are expected to range in the interval
. The angular scales of these anisotropies are discussed.Comment: 31 pages, 3 postscript figures, accepted MNRA
Securitization and Lending Standards: Evidence from the Wholesale Loan Market
securitization;bank risk taking;syndicated loans;financial crisis
Tadpole versus anomaly cancellation in D=4,6 compact IIB orientifolds
It is often stated in the literature concerning D=4,6 compact Type IIB
orientifolds that tadpole cancellation conditions i) uniquely fix the gauge
group (up to Wilson lines and/or moving of branes) and ii) are equivalent to
gauge anomaly cancellation. We study the relationship between tadpole and
anomaly cancellation conditions and qualify both statements. In general the
tadpole cancellation conditions imply gauge anomaly cancellation but are
stronger than the latter conditions in D=4, N=1 orientifolds. We also find that
tadpole cancellation conditions in Z_N D=4,6 compact orientifolds do not
completely fix the gauge group and we provide new solutions different from
those previously reported in the literature.Comment: 28 pages, Latex. Minor corrections, updated reference
Inverse tri-bimaximal type-III seesaw and lepton flavor violation
We present a type-III version of inverse seesaw or, equivalently an inverse
version of type-III seesaw. Naturally small neutrino masses arise at low-scale
from the exchange of neutral fermions transforming as hyperchargeless SU(2)
triplets. In order to implement tri-bimaximal lepton mixing we supplement the
minimal SU(3)xSU(2)xU(1) gauge symmetry with an A4-based flavor symmetry. Our
scenario induces lepton flavour violating (LFV) three body decays that can
proceed at the tree level, while radiative li to lj gamma decays and mu-e
conversion in nuclei are also expected to be sizeable. LFV decays are related
by the underlying flavor symmetry and the new fermions are also expected to be
accessible for study at the Large Hadron Collider (LHC)
Twisted Sector Yukawa Couplings For The Orbifolds
The moduli dependent Yukawa couplings between twisted sectors of Coxeter orbifolds are studied.Comment: 40 pages, SUSX-TH-92/1
Magneto-Acoustic Waves of Small Amplitude in Optically Thin Quasi-Isentropic Plasmas
The evolution of quasi-isentropic magnetohydrodynamic waves of small but
finite amplitude in an optically thin plasma is analyzed. The plasma is assumed
to be initially homogeneous, in thermal equilibrium and with a straight and
homogeneous magnetic field frozen in. Depending on the particular form of the
heating/cooling function, the plasma may act as a dissipative or active medium
for magnetoacoustic waves, while Alfven waves are not directly affected. An
evolutionary equation for fast and slow magnetoacoustic waves in the single
wave limit, has been derived and solved, allowing us to analyse the wave
modification by competition of weakly nonlinear and quasi-isentropic effects.
It was shown that the sign of the quasi-isentropic term determines the scenario
of the evolution, either dissipative or active. In the dissipative case, when
the plasma is first order isentropically stable the magnetoacoustic waves are
damped and the time for shock wave formation is delayed. However, in the active
case when the plasma is isentropically overstable, the wave amplitude grows,
the strength of the shock increases and the breaking time decreases. The
magnitude of the above effects depends upon the angle between the wave vector
and the magnetic field. For hot (T > 10^4 K) atomic plasmas with solar
abundances either in the interstellar medium or in the solar atmosphere, as
well as for the cold (T < 10^3 K) ISM molecular gas, the range of temperature
where the plasma is isentropically unstable and the corresponding time and
length-scale for wave breaking have been found.Comment: 14 pages, 10 figures. To appear in ApJ January 200
- …
