209 research outputs found
Complete genome sequences of dengue virus type 2 strains from Kilifi, Kenya
Dengue infection remains poorly characterized in Africa and little is known regarding its associated viral genetic diversity. Here, we report dengue virus type 2 (DENV-2) sequence data from 10 clinical samples, including 5 complete genome sequences of the cosmopolitan genotype, obtained from febrile adults seeking outpatient care in coastal Kenya
Varieties of living things: Life at the intersection of lineage and metabolism
publication-status: Publishedtypes: Articl
Essential Domains of Anaplasma phagocytophilum Invasins Utilized to Infect Mammalian Host Cells
Anaplasma phagocytophilum causes granulocytic anaplasmosis, an emerging disease of humans and domestic animals. The obligate intracellular bacterium uses its invasins OmpA, Asp14, and AipA to infect myeloid and non-phagocytic cells. Identifying the domains of these proteins that mediate binding and entry, and determining the molecular basis of their interactions with host cell receptors would significantly advance understanding of A. phagocytophilum infection. Here, we identified the OmpA binding domain as residues 59 to 74. Polyclonal antibody generated against a peptide spanning OmpA residues 59 to 74 inhibited A. phagocytophilum infection of host cells and binding to its receptor, sialyl Lewis x (sLex-capped P-selectin glycoprotein ligand 1. Molecular docking analyses predicted that OmpA residues G61 and K64 interact with the two sLex sugars that are important for infection, α2,3-sialic acid and α1,3-fucose. Amino acid substitution analyses demonstrated that K64 was necessary, and G61 was contributory, for recombinant OmpA to bind to host cells and competitively inhibit A. phagocytophilum infection. Adherence of OmpA to RF/6A endothelial cells, which express little to no sLex but express the structurally similar glycan, 6-sulfo-sLex, required α2,3-sialic acid and α1,3-fucose and was antagonized by 6-sulfo-sLex antibody. Binding and uptake of OmpA-coated latex beads by myeloid cells was sensitive to sialidase, fucosidase, and sLex antibody. The Asp14 binding domain was also defined, as antibody specific for residues 113 to 124 inhibited infection. Because OmpA, Asp14, and AipA each contribute to the infection process, it was rationalized that the most effective blocking approach would target all three. An antibody cocktail targeting the OmpA, Asp14, and AipA binding domains neutralized A. phagocytophilumbinding and infection of host cells. This study dissects OmpA-receptor interactions and demonstrates the effectiveness of binding domain-specific antibodies for blocking A. phagocytophilum infection
Simultaneous genome sequencing of symbionts and their hosts
Second-generation sequencing has made possible the sequencing of genomes of interest for even small research groups. However, obtaining separate clean cultures and clonal or inbred samples of metazoan hosts and their bacterial symbionts is often difficult. We present a computational pipeline for separating metazoan and bacterial DNA in silico rather than at the bench. The method relies on the generation of deep coverage of all the genomes in a mixed sample using Illumina short-read sequencing technology, and using aggregate properties of the different genomes to identify read sets belonging to each. This inexpensive and rapid approach has been used to sequence several nematode genomes and their bacterial endosymbionts in the last year in our laboratory and can also be used to visualize and identify unexpected contaminants (or possible symbionts) in genomic DNA samples. We hope that this method will enable researchers studying symbiotic systems to move from gene-centric to genome-centric approaches
Lateral gene transfer between prokaryotes and multicellular eukaryotes: ongoing and significant?
The expansion of genome sequencing projects has produced accumulating evidence for lateral transfer of genes between prokaryotic and eukaryotic genomes. However, it remains controversial whether these genes are of functional importance in their recipient host. Nikoh and Nakabachi, in a recent paper in BMC Biology, take a first step and show that two genes of bacterial origin are highly expressed in the pea aphid Acyrthosiphon pisum. Active gene expression of transferred genes is supported by three other recent studies. Future studies should reveal whether functional proteins are produced and whether and how these are targeted to the appropriate compartment. We argue that the transfer of genes between host and symbiont may occasionally be of great evolutionary importance, particularly in the evolution of the symbiotic interaction itself
Endosymbiont DNA in Endobacteria-Free Filarial Nematodes Indicates Ancient Horizontal Genetic Transfer
Background: Wolbachia are among the most abundant symbiotic microbes on earth; they are present in about 66% of all insect species, some spiders, mites and crustaceans, and most filarial nematode species. Infected filarial nematodes, including many pathogens of medical and veterinary importance, depend on Wolbachia for proper development and survival. The mechanisms behind this interdependence are not understood. Interestingly, a minority of filarial species examined to date are naturally Wolbachia-free.
Methodology/PrincipalFindings:We used 454 pyrosequencing to survey the genomes of two distantly related Wolbachia- free filarial species, Acanthocheilonema viteae and Onchocerca flexuosa. This screen identified 49 Wolbachia-like DNA sequences in A. viteae and 114 in O. flexuosa. qRT-PCR reactions detected expression of 30 Wolbachia-like sequences in A. viteae and 56 in O. flexuosa. Approximately half of these appear to be transcribed from pseudogenes. In situ hybridization showed that two of these pseudogene transcripts were specifically expressed in developing embryos and testes of both species.
Conclusions/Significance: These results strongly suggest that the last common ancestor of extant filarial nematodes was infected with Wolbachia and that this former endosymbiont contributed to their genome evolution. Horizontally transferred Wolbachia DNA may explain the ability of some filarial species to live and reproduce without the endosymbiont while other
species cannot
Horizontal gene transfer in silkworm, Bombyx mori
<p>Abstract</p> <p>Background</p> <p>The domesticated silkworm, <it>Bombyx mori</it>, is the model insect for the order Lepidoptera, has economically important values, and has gained some representative behavioral characteristics compared to its wild ancestor. The genome of <it>B. mori </it>has been fully sequenced while function analysis of <it>BmChi-h </it>and <it>BmSuc1 </it>genes revealed that horizontal gene transfer (HGT) maybe bestow a clear selective advantage to <it>B. mori</it>. However, the role of HGT in the evolutionary history of <it>B. mori </it>is largely unexplored. In this study, we compare the whole genome of <it>B. mori </it>with those of 382 prokaryotic and eukaryotic species to investigate the potential HGTs.</p> <p>Results</p> <p>Ten candidate HGT events were defined in <it>B. mori </it>by comprehensive sequence analysis using Maximum Likelihood and Bayesian method combining with EST checking. Phylogenetic analysis of the candidate HGT genes suggested that one HGT was plant-to- <it>B. mori </it>transfer while nine were bacteria-to- <it>B. mori </it>transfer. Furthermore, functional analysis based on expression, coexpression and related literature searching revealed that several HGT candidate genes have added important characters, such as resistance to pathogen, to <it>B. mori</it>.</p> <p>Conclusions</p> <p>Results from this study clearly demonstrated that HGTs play an important role in the evolution of <it>B. mori </it>although the number of HGT events in <it>B. mori </it>is in general smaller than those of microbes and other insects. In particular, interdomain HGTs in <it>B. mori </it>may give rise to functional, persistent, and possibly evolutionarily significant new genes.</p
Ergatis: a web interface and scalable software system for bioinformatics workflows
Motivation: The growth of sequence data has been accompanied by an increasing need to analyze data on distributed computer clusters. The use of these systems for routine analysis requires scalable and robust software for data management of large datasets. Software is also needed to simplify data management and make large-scale bioinformatics analysis accessible and reproducible to a wide class of target users
Technological Catching Up, Quality of Exports, and Competitiveness: A Sectoral Perspective
Complete Genome Sequences of Dengue Virus Type 2 Strains from Kilifi, Kenya
Dengue infection remains poorly characterized in Africa and little is
known regarding its associated viral genetic diversity. Here, we report dengue virus
type 2 (DENV-2) sequence data from 10 clinical samples, including 5 complete genome sequences of the cosmopolitan genotype, obtained from febrile adults seeking outpatient care in coastal Kenya
- …
