264 research outputs found

    The effect of protein mutations on drug binding suggests ensuing personalised drug selection

    Get PDF
    The advent of personalised medicine promises a deeper understanding of mechanisms and therefore therapies. However, the connection between genomic sequences and clinical treatments is often unclear. We studied 50 breast cancer patients belonging to a population-cohort in the state of Qatar. From Sanger sequencing, we identified several new deleterious mutations in the estrogen receptor 1 gene (ESR1). The effect of these mutations on drug treatment in the protein target encoded by ESR1, namely the estrogen receptor, was achieved via rapid and accurate protein-ligand binding affinity interaction studies which were performed for the selected drugs and the natural ligand estrogen. Four nonsynonymous mutations in the ligand-binding domain were subjected to molecular dynamics simulation using absolute and relative binding free energy methods, leading to the ranking of the efficacy of six selected drugs for patients with the mutations. Our study shows that a personalised clinical decision system can be created by integrating an individual patient's genomic data at the molecular level within a computational pipeline which ranks the efficacy of binding of particular drugs to variant proteins

    MRI Findings for Frozen Shoulder Evaluation: Is the Thickness of the Coracohumeral Ligament a Valuable Diagnostic Tool?

    Get PDF
    Recent studies have demonstrated that the coracohumeral ligament (CHL) is shortened and thickened in a frozen shoulder. We analyzed the rate in CHL visualization between patients with frozen shoulder and normal volunteers using Magnetic Resonance Imaging (MRI) to determine the CHL thickness in the patients with a frozen shoulder.>0.05).MR Imaging is a satisfactory method for CHL depiction, and a thickened CHL is highly suggestive of frozen shoulder

    Inferring Binding Energies from Selected Binding Sites

    Get PDF
    We employ a biophysical model that accounts for the non-linear relationship between binding energy and the statistics of selected binding sites. The model includes the chemical potential of the transcription factor, non-specific binding affinity of the protein for DNA, as well as sequence-specific parameters that may include non-independent contributions of bases to the interaction. We obtain maximum likelihood estimates for all of the parameters and compare the results to standard probabilistic methods of parameter estimation. On simulated data, where the true energy model is known and samples are generated with a variety of parameter values, we show that our method returns much more accurate estimates of the true parameters and much better predictions of the selected binding site distributions. We also introduce a new high-throughput SELEX (HT-SELEX) procedure to determine the binding specificity of a transcription factor in which the initial randomized library and the selected sites are sequenced with next generation methods that return hundreds of thousands of sites. We show that after a single round of selection our method can estimate binding parameters that give very good fits to the selected site distributions, much better than standard motif identification algorithms

    Hepatocyte Growth Factor Modulates Interleukin-6 Production in Bone Marrow Derived Macrophages: Implications for Inflammatory Mediated Diseases

    Get PDF
    The generation of the pro-inflammatory cytokines IL-6, TNF-α, and IL-1β fuel the acute phase response (APR). To maintain body homeostasis, the increase of inflammatory proteins is resolved by acute phase proteins via presently unknown mechanisms. Hepatocyte growth factor (HGF) is transcribed in response to IL-6. Since IL-6 production promotes the generation of HGF and induces the APR, we posited that accumulating HGF might be a likely candidate for quelling excess inflammation under non-pathological conditions. We sought to assess the role of HGF and how it influences the regulation of inflammation utilizing a well-defined model of inflammatory activation, lipopolysaccharide (LPS)-stimulation of bone marrow derived macrophages (BMM). BMM were isolated from C57BL6 mice and were stimulated with LPS in the presence or absence of HGF. When HGF was present, there was a decrease in production of the pro-inflammatory cytokine IL-6, along with an increase in the anti-inflammatory cytokine IL-10. Altered cytokine production correlated with an increase in phosphorylated GSK3β, increased retention of the phosphorylated NFκB p65 subunit in the cytoplasm, and an enhanced interaction between CBP and phospho-CREB. These changes were a direct result of signaling through the HGF receptor, MET, as effects were reversed in the presence of a selective inhibitor of MET (SU11274) or when using BMM from macrophage-specific conditional MET knockout mice. Combined, these data provide compelling evidence that under normal circumstances, HGF acts to suppress the inflammatory response

    Small molecules and targeted therapies in distant metastatic disease

    Get PDF
    Chemotherapy, biological agents or combinations of both have had little impact on survival of patients with metastatic melanoma. Advances in understanding the genetic changes associated with the development of melanoma resulted in availability of promising new agents that inhibit specific proteins up-regulated in signal cell pathways or inhibit anti-apoptotic proteins. Sorafenib, a multikinase inhibitor of the RAF/RAS/MEK pathway, elesclomol (STA-4783) and oblimersen (G3139), an antisense oligonucleotide targeting anti-apoptotic BCl-2, are in phase III clinical studies in combination with chemotherapy. Agents targeting mutant B-Raf (RAF265 and PLX4032), MEK (PD0325901, AZD6244), heat-shock protein 90 (tanespimycin), mTOR (everolimus, deforolimus, temsirolimus) and VEGFR (axitinib) showed some promise in earlier stages of clinical development. Receptor tyrosine-kinase inhibitors (imatinib, dasatinib, sunitinib) may have a role in treatment of patients with melanoma harbouring c-Kit mutations. Although often studied as single agents with disappointing results, new targeted drugs should be more thoroughly evaluated in combination therapies. The future of rational use of new targeted agents also depends on successful application of analytical techniques enabling molecular profiling of patients and leading to selection of likely therapy responders

    Gene expression analysis after receptor tyrosine kinase activation reveals new potential melanoma proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Melanoma is an aggressive tumor with increasing incidence. To develop accurate prognostic markers and targeted therapies, changes leading to malignant transformation of melanocytes need to be understood. In the <it>Xiphophorus </it>melanoma model system, a mutated version of the EGF receptor Xmrk (<it>Xiphophorus </it>melanoma receptor kinase) triggers melanomagenesis. Cellular events downstream of Xmrk, such as the activation of Akt, Ras, B-Raf or Stat5, were also shown to play a role in human melanomagenesis. This makes the elucidation of Xmrk downstream targets a useful method for identifying processes involved in melanoma formation.</p> <p>Methods</p> <p>Here, we analyzed Xmrk-induced gene expression using a microarray approach. Several highly expressed genes were confirmed by realtime PCR, and pathways responsible for their induction were revealed using small molecule inhibitors. The expression of these genes was also monitored in human melanoma cell lines, and the target gene <it>FOSL1 </it>was knocked down by siRNA. Proliferation and migration of siRNA-treated melanoma cell lines were then investigated.</p> <p>Results</p> <p>Genes with the strongest upregulation after receptor activation were FOS-like antigen 1 (<it>Fosl1</it>), early growth response 1 (<it>Egr1</it>), osteopontin (<it>Opn</it>), insulin-like growth factor binding protein 3 (<it>Igfbp3</it>), dual-specificity phosphatase 4 (<it>Dusp4</it>), and tumor-associated antigen L6 (<it>Taal6</it>). Interestingly, most genes were blocked in presence of a SRC kinase inhibitor. Importantly, we found that <it>FOSL1</it>, <it>OPN</it>, <it>IGFBP3</it>, <it>DUSP4</it>, and <it>TAAL6 </it>also exhibited increased expression levels in human melanoma cell lines compared to human melanocytes. Knockdown of <it>FOSL1 </it>in human melanoma cell lines reduced their proliferation and migration.</p> <p>Conclusion</p> <p>Altogether, the data show that the receptor tyrosine kinase Xmrk is a useful tool in the identification of target genes that are commonly expressed in Xmrk-transgenic melanocytes and melanoma cell lines. The identified molecules constitute new possible molecular players in melanoma development. Specifically, a role of FOSL1 in melanomagenic processes is demonstrated. These data are the basis for future detailed analyses of the investigated target genes.</p

    Malignant melanoma arising from a perianal fistula and harbouring a BRAF gene mutation: a case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Melanoma of the anal region is a very uncommon disease, accounting for only 0.2-0.3% of all melanoma cases. Mutations of the <it>BRAF </it>gene are usually absent in melanomas occurring in this region as well as in other sun-protected regions. The development of a tumour in a longstanding perianal fistula is also extremely rare. More frequent is the case of a tumour presenting as a fistula, that is, the fistula being a consequence of the cancerous process, although we have found only two cases of fistula-generating melanomas reported in the literature.</p> <p>Case Presentation</p> <p>Here we report the case of a 38-year-old male who presented with a perianal fistula of four years of evolution. Histopathological examination of the fistulous tract confirmed the presence of malignant melanoma. Due to the small size and the central location of the melanoma inside the fistulous tract, we believe the melanoma reported here developed in the epithelium of the fistula once the latter was already formed. Resected sentinel lymph nodes were negative and the patient, after going through a wide local excision, remains disease-free nine years after diagnosis. DNA obtained from melanoma tissue was analysed by automated direct sequencing and the <it>V600E </it>(<it>T1799A</it>) mutation was detected in exon 15 of the <it>BRAF </it>gene.</p> <p>Conclusion</p> <p>Since fistulae experience persistent inflammation, the fact that this melanoma harbours a <it>BRAF </it>mutation strengthens the view that oxidative stress caused by inflammatory processes plays an important role in the genesis of <it>BRAF </it>gene mutations.</p

    Fractal dimension of chromatin is an independent prognostic factor for survival in melanoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prognostic factors in malignant melanoma are currently based on clinical data and morphologic examination. Other prognostic features, however, which are not yet used in daily practice, might add important information and thus improve prognosis, treatment, and survival. Therefore a search for new markers is desirable. Previous studies have demonstrated that fractal characteristics of nuclear chromatin are of prognostic importance in neoplasias. We have therefore investigated whether the fractal dimension of nuclear chromatin measured in routine histological preparations of malignant melanomas could be a prognostic factor for survival.</p> <p>Methods</p> <p>We examined 71 primary superficial spreading cutaneous melanoma specimens (thickness ≥ 1 mm) from patients with a minimum follow up of 5 years. Nuclear area, form factor and fractal dimension of chromatin texture were obtained from digitalized images of hematoxylin-eosin stained tissue micro array sections. Clark's level, tumor thickness and mitotic rate were also determined.</p> <p>Results</p> <p>The median follow-up was 104 months. Tumor thickness, Clark's level, mitotic rate, nuclear area and fractal dimension were significant risk factors in univariate Cox regressions. In the multivariate Cox regression, stratified for the presence or absence of metastases at diagnosis, only the Clark level and fractal dimension of the nuclear chromatin were included as independent prognostic factors in the final regression model.</p> <p>Conclusion</p> <p>In general, a more aggressive behaviour is usually found in genetically unstable neoplasias with a higher number of genetic or epigenetic changes, which on the other hand, provoke a more complex chromatin rearrangement. The increased nuclear fractal dimension found in the more aggressive melanomas is the mathematical equivalent of a higher complexity of the chromatin architecture. So, there is strong evidence that the fractal dimension of the nuclear chromatin texture is a new and promising variable in prognostic models of malignant melanomas.</p

    Minocycline Synergizes with N-Acetylcysteine and Improves Cognition and Memory Following Traumatic Brain Injury in Rats

    Get PDF
    Background: There are no drugs presently available to treat traumatic brain injury (TBI). A variety of single drugs have failed clinical trials suggesting a role for drug combinations. Drug combinations acting synergistically often provide the greatest combination of potency and safety. The drugs examined (minocycline (MINO), N-acetylcysteine (NAC), simvastatin, cyclosporine A, and progesterone) had FDA-approval for uses other than TBI and limited brain injury in experimental TBI models. Methodology/Principal Findings: Drugs were dosed one hour after injury using the controlled cortical impact (CCI) TBI model in adult rats. One week later, drugs were tested for efficacy and drug combinations tested for synergy on a hierarchy of behavioral tests that included active place avoidance testing. As monotherapy, only MINO improved acquisition of the massed version of active place avoidance that required memory lasting less than two hours. MINO-treated animals, however, were impaired during the spaced version of the same avoidance task that required 24-hour memory retention. Coadministration of NAC with MINO synergistically improved spaced learning. Examination of brain histology 2 weeks after injury suggested that MINO plus NAC preserved white, but not grey matter, since lesion volume was unaffected, yet myelin loss was attenuated. When dosed 3 hours before injury, MINO plus NAC as single drugs had no effect on interleukin-1 formation; together they synergistically lowered interleukin-1 levels. This effect on interleukin-1 was not observed when th
    corecore