75 research outputs found

    Unusual cage rearrangements in 10-vertex nido-5,6-dicarbaborane derivatives : An interplay between theory and experiment

    Get PDF
    The reaction between selected X-nido-5,6-C2B8H11 compounds (where X = Cl, Br, I) and "Proton Sponge" [PS; 1,8-bis(dimethylamino)naphthalene], followed by acidification, results in extensive rearrangement of all cage vertices. Specifically, deprotonation of 7-X-5,6-C2B8H11 compounds with one equivalent of PS in hexane or CH2Cl2 at ambient temperature led to a 7 → 10 halogen rearrangement, forming a series of PSH+[10-X-5,6-C2B8H10]- salts. Reprotonation using concentrated H2SO4 in CH2Cl2 generates a series of neutral carbaboranes 10-X-5,6-C2B8H11, with the overall 7 → 10 conversion being 75%, 95%, and 100% for X = Cl, Br, and I, respectively. Under similar conditions, 4-Cl-5,6-C2B8H11 gave ∼66% conversion to 3- Cl-5,6-C2B8H11. Since these rearrangements could not be rationalized using the Bvertex swing mechanism, new cage rearrangement mechanisms, which are substantiated using DFT calculations, have been proposed. Experimental 11B NMR chemical shifts are well reproduced by the computations; as expected δ(11B) for B(10) atoms in derivatives with X = Br and I are heavily affected by spin-orbit coupling

    Influence of Antipodally Coupled Iodine and Carbon Atoms on the Cage Structure of 9,12-I2-closo-1,2-C2B10H10 : An Electron Diffraction and Computational Study

    Get PDF
    Because of the comparable electron scattering abilities of carbon and boron, the electron diffraction structure of the C2v-symmetric molecule closo-1,2-C2B10H12 (1), one of the building blocks of boron cluster chemistry, is not as accurate as it could be. On that basis, we have prepared the known diiodo derivative of 1, 9,12-I2-closo-1,2-C2B10H10 (2), which has the same point-group symmetry as 1 but in which the presence of iodine atoms, with their much stronger ability to scatter electrons, ensures much better structural characterization of the C2B10 icosahedral core. Furthermore, the influence on the C2B10 geometry in 2 of the antipodally positioned iodine substituents with respect to both carbon atoms has been examined using the concerted application of gas electron diffraction and quantum chemical calculations at the MP2 and density functional theory (DFT) levels. The experimental and computed molecular geometries are in good overall agreement. Molecular dynamics simulations used to obtain vibrational parameters, which are needed for analyzing the electron diffraction data, have been performed for the first time for this class of compound. According to DFT calculations at the ZORA-SO/BP86 level, the 11B chemical shifts of the boron atoms to which the iodine substituents are bonded are dominated by spin-orbit coupling. Magnetically induced currents within 2 have been calculated and compared to those for [B12H12]2-, the latter adopting a regular icosahedral structure with Ih point-group symmetry. Similar total current strengths are found but with a certain anisotropy, suggesting that spherical aromaticity is present; electron delocalization in the plane of the hetero atoms in 2 is slightly hindered compared to that for [B12H12]2-, presumably because of the departure from ideal icosahedral symmetry

    Proton affinities of amino group functionalizing 2D and 3D boron compounds

    Get PDF
    We report quantum-chemical computations of Proton Affinities (PA) of icosahedral amino boranes, carboranes and Co-containing metallacarboranes with arelative error of ~ 2% - when experimental data available- by means of the B3LYP and BP86 functionals. Use of larger basis sets for simple systems such as NH3, CH3NH2, and borazine (B3H6N3) reduces theerr or to ~ 0.5 % indicating the validity of these functionals for these computations and prediction of PA for unavailable experimental data on amino-derived (car)boranes and metalla(car)boranes. The computed PA show that, from an electronic structure point of view, when substituting an exo H atom by an NH2 group in B12H12(2-), CB11H12(-), (ortho, meta, para)-C2B10H12, and the metalla carborane [3-Co(1,2-C2B9H11)2](-)=COSAN the most similar system to be compared with is the anion NH2-BH3(-) – computed PA(B3LYP/cc-pVTZ) = 1505 kJ·mol-1 – rather than methylamine CH3NH2 or borazine, the two latter with experimental PA of 900 and 803 kJ·mol-1 respectively. The largest PA for a given isomer correspond, following this order, to: 1-NH2-B12H11(2-), (-)BH3NH2 , 12-NH2-CB11H11(-), cisoid8-NH2-COSAN, transoid 9-NH2-COSAN, 9-NH2-1,2-C2B10H11, 9-NH2-1,7-C2B10H11, and 2-NH2-1,12-C2B10H11. The rule for larger PA applies for isomers with the NH2 groups farthest aways from (non-metal) carborane C(cage) atoms. Pyramidalization energy computation shows an enhanced facility for planarization of the amino group in cisoid 8-NH2-COSAN as compared to cisoid 1-NH2-COSAN

    Borane Polyhedra as Building Blocks for Unknown but Potentially Isolatable New Molecules – Extensions based on Computations of the Known B18H22 Isomers

    Get PDF
    Known borane polyhedral cluster characteristics can be used for predicting new architectural constructs. We propose additional structures derived from B18H22 : three positional isomers different from the well-known anti-B18H22 and syn-B18H22 boranes. We have also derived two new cyclic structures based on the condensation of borane pentagonal pyramids and bipyramids. The concatenation of polyhedral borane molecules is also considered from a mathematical point of view. (doi: 10.5562/cca2304

    Nuclear magnetic shielding of monoboranes : calculation and assessment of 11B NMR chemical shifts in planar BX3 and in tetrahedral [BX4]- systems

    Get PDF
    The financial support of the Czech Science Foundation (project No. 17-08045S) is gratefully acknowledged.11B NMR chemical shifts of tricoordinated BX3 and tetracoordinated BX4- compounds (X = H, CH3, F, Cl, Br, I, OH, SH, NH2, and CH=CH2) were computed and the shielding tensors were explored not only within the nonrelativistic GIAO approach but also by applying both relativistic ZORA computations including spin-orbit coupling as well as by employing scalar nonrelativistic ZORA computations (BP86 level of density functional theory). The contributions of the spin-orbit coupling to the overall shieldings are decisive for X = Br and I in both series. No relationship was found between the 2p orbital occupancies or 1/∆E (difference between LUMO and suitably occupied MO that can be coupled with LUMO) with the shielding tensors (or their principal values) in the BX3 series. However, a multidimensional statistical approach known as factor analysis (frequently used in chemometrics) revealed that three factors account for 92 % of the cumulative proportion of total variance. The main components of the first factor are occupancies in the 2px and 2py orbitals and 1/∆E, the second factor is mainly the occupancy in the 2pz orbital and the inductive substituent parameters by Taft and, finally, the third factor consists exclusively (99.3 %) of the electrostatic potentials (Vmax), which is directly related to the so-called π-hole magnitudes.PostprintPeer reviewe

    Gas-phase structures of sterically crowded disilanes studied by electron diffraction and quantum chemical methods : 1,1,2,2-tetrakis(trimethylsilyl) disilane and 1,1,2,2-tetrakis(trimethylsilyl)dimethyldisilane

    Get PDF
    The gas-phase structures of the disilanes 1,1,2,2-tetrakis(trimethylsilyl) disilane [(Me3Si)2HSiSiH(SiMe3)2] (1) and 1,1,2,2-tetrakis(trimethylsilyl)dimethyldisilane [(Me 3Si)2MeSiSiMe(SiMe3)2] (2) have been determined by density functional theoretical calculations and by gas electron diffraction (GED) employing the SARACEN method. For each of 1 and 2 DFT calculations revealed four C2-symmetric conformers occupying minima on the respective potential-energy surfaces; three conformers were estimated to be present in sufficient quantities to be taken into account when fitting the GED data. For (Me3Si)2RSiSiR(SiMe3)2 [R = H (1), CH3 (2)] the lowest energy conformers were found by GED to have RSiSiR dihedral angles of 87.7(17)° for 1 and -47.0(6)° for 2. For each of 1 and 2 the presence of bulky and flexible trimethylsilyl groups dictates many aspects of the geometric structures in the gas phase, with the molecules often adopting structures that reduce steric strain

    Nuclear magnetic resonance data of B8H12N2

    No full text

    C2H12B4 2,4-(1,2-Ethanediyl)tetraborane(10)

    No full text

    Molecular geometry of (E)- and (Z)- methylcyanovinyl ether

    Full text link
    corecore