97 research outputs found
Electron-Positron colliders
An electron-positron linear collider in the energy range between 500 and 1000
GeV is of crucial importance to precisely test the Standard Model and to
explore the physics beyond it. The physics program is complementary to that of
the Large Hadron Collider. Some of the main physics goals and the expected
accuracies of the anticipated measurements at such a linear collider are
discussed. A short review of the different collider designs presently under
study is given including possible upgrade paths to the multi-TeV region.
Finally a framework is presented within which the realisation of such a project
could be achieved as a global international project.Comment: 14 pages, 16 figures, Proceedings of the XX International Symposium
on Lepton and Photon Interactions at High Energies, Rome, Italy, 23-28 July,
200
Measurement of the forward-backward asymmetries for charm- and bottom-quark pair productions at =58GeV with electron tagging
We have measured, with electron tagging, the forward-backward asymmetries of
charm- and bottom-quark pair productions at =58.01GeV, based on
23,783 hadronic events selected from a data sample of 197pb taken with
the TOPAZ detector at TRISTAN. The measured forward-backward asymmetries are
and , which are consistent with the standard model
predictions.Comment: 19 pages, Latex format (article), 5 figures included. to be published
in Phys. Lett.
Achievements of Hinode in the first eleven years
Hinode is Japan’s third solar mission following Hinotori (1981–1982) and Yohkoh (1991–2001): it was launched on 2006 September 22 and is in operation currently. Hinode carries three instruments: the Solar Optical Telescope, the X-Ray Telescope, and the EUV Imaging Spectrometer. These instruments were built under international collaboration with the National Aeronautics and Space Administration and the UK Science and Technology Facilities Council, and its operation has been contributed to by the European Space Agency and the Norwegian Space Center. After describing the satellite operations and giving a performance evaluation of the three instruments, reviews are presented on major scientific discoveries by Hinode in the first eleven years (one solar cycle long) of its operation. This review article concludes with future prospects for solar physics research based on the achievements of Hinode
Production of gamma rays by pulsed laser beam Compton scattering off GeV-electrons using a non-planar four-mirror optical cavity
As part of the positron source R&D for future colliders and Compton
based compact light sources, a high finesse non-planar four-mirror Fabry-Perot
cavity has recently been installed at the ATF (KEK, Tsukuba, Japan). The first
measurements of the gamma ray flux produced with a such cavity using a pulsed
laser is presented here. We demonstrate the production of a flux of 2.7
0.2 gamma rays per bunch crossing ( gammas per second) during
the commissioning
Achievements of Hinode in the first eleven years
Hinode is Japan’s third solar mission following Hinotori (1981–1982) and Yohkoh (1991–2001): it was launched on 2006 September 22 and is in operation currently. Hinode carries three instruments: the Solar Optical Telescope, the X-Ray Telescope, and the EUV Imaging Spectrometer. These instruments were built under international collaboration with the National Aeronautics and Space Administration and the UK Science and Technology Facilities Council, and its operation has been contributed to by the European Space Agency and the Norwegian Space Center. After describing the satellite operations and giving a performance evaluation of the three instruments, reviews are presented on major scientific discoveries by Hinode in the first eleven years (one solar cycle long) of its operation. This review article concludes with future prospects for solar physics research based on the achievements of Hinode
- …