971 research outputs found
Accreting millisecond X-ray pulsars: 10 years of INTEGRAL observations
During the last 10 years, INTEGRAL made a unique contribution to the study of
accreting millisecond X-ray pulsars (AMXPs), discovering three of the 14
sources now known of this class. Besides increasing the number of known AMXPs,
INTEGRAL also carried out observations of these objects above 20 keV,
substantially advancing our understanding of their behaviour. We present here a
review of all the AMXPs observed with INTEGRAL and discuss the physical
interpretation of their behaviour in the X-ray domain. We focus in particular
on the lightcurve profile during outburst, as well as the timing, spectral, and
thermonuclear type-I X-ray bursts properties.Comment: 8 pages, 8 figures. Proceedings of "An INTEGRAL view of the
high-energy sky (the first 10 years)" the 9th INTEGRAL Workshop, October
15-19, 2012, Paris, Franc
Recent results from COMPTEL observations of Cygnus X‐1
The COMPTEL experiment on the Compton Gamma‐Ray Observatory (CGRO) has now observed Cyg X‐1 on four separate occasions during phase 1 and phase 2 of its orbital mission (April, 1991 to August, 1993). Here we report on the results of the latest analysis of these data, which provide a spectrum extending to energies greater than 2 MeV. A spectral analysis of these data, in the context of a classical Comptonization model, indicates an electron temperature much higher than previous hard X‐ray measurements would suggest (200 keV vs 60–80 keV). This implies either some limitations in the standard Comptonization model and/or the need to incorporate a reflected component in the hard X‐ray spectrum. Although significant variability near 1 MeV has been observed, there is no evidence for any ‘MeV excess.
W(h)ither Fossils? Studying Morphological Character Evolution in the Age of Molecular Sequences
A major challenge in the post-genomics era will be to integrate molecular sequence data from extant organisms with morphological data from fossil and extant taxa into a single, coherent picture of phylogenetic relationships; only then will these phylogenetic hypotheses be effectively applied to the study of morphological character evolution. At least two analytical approaches to solving this problem have been utilized: (1) simultaneous analysis of molecular sequence and morphological data with fossil taxa included as terminals in the analysis, and (2) the molecular scaffold approach, in which morphological data are analyzed over a molecular backbone (with constraints that force extant taxa into positions suggested by sequence data). The perceived obstacles to including fossil taxa directly in simultaneous analyses of morphological and molecular sequence data with extant taxa include: (1) that fossil taxa are missing the molecular sequence portion of the character data; (2) that morphological characters might be misleading due to convergence; and (3) character weighting, specifically how and whether to weight characters in the morphological partition relative to characters in the molecular sequence data partition. The molecular scaffold has been put forward as a potential solution to at least some of these problems. Using examples of simultaneous analyses from the literature, as well as new analyses of previously published morphological and molecular sequence data matrices for extant and fossil Chiroptera (bats), we argue that the simultaneous analysis approach is superior to the molecular scaffold approach, specifically addressing the problems to which the molecular scaffold has been suggested as a solution. Finally, the application of phylogenetic hypotheses including fossil taxa (whatever their derivation) to the study of morphological character evolution is discussed, with special emphasis on scenarios in which fossil taxa are likely to be most enlightening: (1) in determining the sequence of character evolution; (2) in determining the timing of character evolution; and (3) in making inferences about the presence or absence of characteristics in fossil taxa that may not be directly observable in the fossil record.
Published By: Missouri Botanical Garde
COMPTEL solar flare observations
COMPTEL as part of a solar target of opportunity campaign observed the sun during the period of high solar activity from 7-15 Jun. 1991. Major flares were observed on 9 and 11 Jun. Although both flares were large GOES events (greater than or = X10), they were not extraordinary in terms of gamma-ray emission. Only the decay phase of the 15 Jun. flare was observed by COMPTEL. We report the preliminary analysis of data from these flares, including the first spectroscopic measurement of solar flare neutrons. The deuterium formation line at 2.223 MeV was present in both events and for at least the 9 Jun. event, was comparable to the flux in the nuclear line region of 4-8 MeV, consistent with Solar-Maximum Mission (SSM) Observations. A clear neutron signal was present in the flare of 9 Jun. with the spectrum extending up to 80 MeV and consistent in time with the emission of gamma-rays, confirming the utility of COMPTEL in measuring the solar neutron flux at low energies. The neutron flux below 100 MeV appears to be lower than that of the 3 Jun. 1982 flare by more than an order of magnitude. The neutron signal of the 11 Jun. event is under study. Severe dead time effects resulting from the intense thermal x-rays require significant corrections to the measured flux which increase the magnitude of the associated systematic uncertainties
A deep campaign to characterize the synchronous radio/X-ray mode switching of PSR B0943+10
We report on simultaneous X-ray and radio observations of the mode-switching
pulsar PSR B0943+10 obtained with the XMM-Newton satellite and the LOFAR, LWA
and Arecibo radio telescopes in November 2014. We confirm the synchronous
X-ray/radio switching between a radio-bright (B) and a radio-quiet (Q) mode, in
which the X-ray flux is a factor ~2.4 higher than in the B-mode. We discovered
X-ray pulsations, with pulsed fraction of 38+/-5% (0.5-2 keV), during the
B-mode, and confirm their presence in Q-mode, where the pulsed fraction
increases with energy from ~20% up to ~65% at 2 keV. We found marginal evidence
for an increase in the X-ray pulsed fraction during B-mode on a timescale of
hours. The Q-mode X-ray spectrum requires a fit with a two-component model
(either a power-law plus blackbody or the sum of two blackbodies), while the
B-mode spectrum is well fit by a single blackbody (a single power-law is
rejected). With a maximum likelihood analysis, we found that in Q-mode the
pulsed emission has a thermal blackbody spectrum with temperature ~3.4x10^6 K
and the unpulsed emission is a power-law with photon index ~2.5, while during
B-mode both the pulsed and unpulsed emission can be fit by either a blackbody
or a power law with similar values of temperature and photon index. A Chandra
image shows no evidence for diffuse X-ray emission. These results support a
scenario in which both unpulsed non-thermal emission, likely of magnetospheric
origin, and pulsed thermal emission from a small polar cap (~1500 m^2) with a
strong non-dipolar magnetic field (~10^{14} G), are present during both radio
modes and vary in intensity in a correlated way. This is broadly consistent
with the predictions of the partially screened gap model and does not
necessarily imply global magnetospheric rearrangements to explain the mode
switching.Comment: To be published on The Astrophysical Journa
- …
