135 research outputs found

    Individual Physiological Adaptations Enable Selected Bacterial Taxa To Prevail during Long-Term Incubations

    Get PDF
    Enclosure experiments are frequently used to investigate the impact of changing environmental conditions on microbial assemblages. Yet, how the incuba- tion itself challenges complex bacterial communities is thus far unknown. In this study, metaproteomic profiling, 16S rRNA gene analyses, and cell counts were com- bined to evaluate bacterial communities derived from marine, mesohaline, and oli- gohaline conditions after long-term batch incubations. Early in the experiment, the three bacterial communities were highly diverse and differed significantly in their compositions. Manipulation of the enclosures with terrigenous dissolved organic car- bon resulted in notable differences compared to the control enclosures at this early phase of the experiment. However, after 55 days, bacterial communities in the ma- nipulated and the control enclosures under marine and mesohaline conditions were all dominated by gammaproteobacterium Spongiibacter. In the oligohaline enclo- sures, actinobacterial cluster I of the hgc group (hgc-I) remained abundant in the late phase of the incubation. Metaproteome analyses suggested that the ability to use outer membrane-based internal energy stores, in addition to the previously de- scribed grazing resistance, may enable the gammaproteobacterium Spongiibacter to prevail in long-time incubations. Under oligohaline conditions, the utilization of ex- ternal recalcitrant carbon appeared to be more important (hgc-I). Enclosure experi- ments with complex natural microbial communities are important tools to investi- gate the effects of manipulations. However, species-specific properties, such as individual carbon storage strategies, can cause manipulation-independent effects and need to be considered when interpreting results from enclosures.This study was financially supported by the SAW-funded ATKiM project, which provided funds to D. P. R. Herlemann, C. Meeske, K. Jürgens, S. Markert, and T. Schweder. D. P. R. Herlemann was also supported by the European Regional Develop- ment Fund/Estonian Research Council funded Mobilitas Plus Top Researcher grant MOBTT24. We thank the crew and captain of the RV Meteor (M86, M87) for support during the research cruise. The computations were performed on resources provided by the Swedish National Infrastructure for Computing (SNIC) at the PDC Centre for High Performance Computing (PDC-HPC) and Uppsala Multidisciplinary Center for Advanced Computational Science (UPPMAX). We thank Jana Matulla for excellent technical assis- tance and Stephan Fuchs for his help and advice in MS database construction. We also thank Stefan E. Heiden for valuable help with the CDD BLAST analyses.This study was financially supported by the SAW-funded ATKiM project, which provided funds to D. P. R. Herlemann, C. Meeske, K. Jürgens, S. Markert, and T. Schweder. D. P. R. Herlemann was also supported by the European Regional Develop- ment Fund/Estonian Research Council funded Mobilitas Plus Top Researcher grant MOBTT24. We thank the crew and captain of the RV Meteor (M86, M87) for support during the research cruise. The computations were performed on resources provided by the Swedish National Infrastructure for Computing (SNIC) at the PDC Centre for High Performance Computing (PDC-HPC) and Uppsala Multidisciplinary Center for Advanced Computational Science (UPPMAX). We thank Jana Matulla for excellent technical assis- tance and Stephan Fuchs for his help and advice in MS database construction. We also thank Stefan E. Heiden for valuable help with the CDD BLAST analyses

    Decontamination of 16S rRNA gene amplicon sequence datasets based on bacterial load assessment by qPCR

    Full text link
    Identification of unexpected taxa in 16S rRNA surveys of low-density microbiota, diluted mock communities and cultures demonstrated that a variable fraction of sequence reads originated from exogenous DNA. The sources of these contaminants are reagents used in DNA extraction, PCR, and next-generation sequencing library preparation, and human (skin, oral and respiratory) microbiota from the investigators

    Genome Majority Vote Improves Gene Predictions

    Get PDF
    Recent studies have noted extensive inconsistencies in gene start sites among orthologous genes in related microbial genomes. Here we provide the first documented evidence that imposing gene start consistency improves the accuracy of gene start-site prediction. We applied an algorithm using a genome majority vote (GMV) scheme to increase the consistency of gene starts among orthologs. We used a set of validated Escherichia coli genes as a standard to quantify accuracy. Results showed that the GMV algorithm can correct hundreds of gene prediction errors in sets of five or ten genomes while introducing few errors. Using a conservative calculation, we project that GMV would resolve many inconsistencies and errors in publicly available microbial gene maps. Our simple and logical solution provides a notable advance toward accurate gene maps

    Early-life gut dysbiosis linked to juvenile mortality in ostriches

    Get PDF
    Imbalances in the gut microbial community (dysbiosis) of vertebrates have been associated with several gastrointestinal and autoimmune diseases. However, it is unclear which taxa are associated with gut dysbiosis, and if particular gut regions or specific time periods during ontogeny are more susceptible. We also know very little of this process in non-model organisms, despite an increasing realization of the general importance of gut microbiota for health

    Organic matter from Artic sea ice loss alters bacterial community structure and function

    Get PDF
    Continuing losses of multi-year sea ice (MYI) across the Arctic are resulting in first-year ice (FYI) dominating the Arctic ice pack. Melting FYI provides a strong seasonal pulse of dissolved organic matter (DOM) into surface waters; however, the biological impact of this DOM input is unknown. Here we show that DOM additions cause significant and contrasting changes in under-ice bacterioplankton abundance, production and species composition. Utilization of DOM was influenced by molecular size, with 10-100 kDa and >100 kDa DOM fractions promoting rapid growth of particular taxa, while uptake of sulfur and nitrogen-rich low molecular weight organic compounds shifted bacterial community composition. These results demonstrate the ecological impacts of DOM released from melting FYI, with wideranging consequences for the cycling of organic matter across regions of the Arctic Ocean transitioning from multi-year to seasonal sea ice as the climate continues to warm

    Composition and transformation of dissolved organic matter in the Baltic Sea

    No full text
    The processing of terrestrial dissolved organic matter (DOM) in coastal shelf seas is an important part of the global carbon cycle, yet, it is still not well understood. One of the largest brackish shelf seas, the Baltic Sea in northern Europe, is characterized by high freshwater input from sub-arctic rivers and limited water exchange with the Atlantic Ocean via the North Sea. We studied the molecular and isotopic composition and turnover of solid-phase extractable (SPE) DOM and its transformation along the salinity and redox continuum of the Baltic Sea during spring and autumn. We applied ultrahigh-resolution mass spectrometry and other geochemical and biological approaches. Our data demonstrate a large influx of terrestrial riverine DOM, especially into the northern part of the Baltic Sea. The DOM composition in the central Baltic Sea changed seasonally and was mainly related to autochthonous production by phytoplankton in spring. Especially in the northern, river-dominated basins, a major fraction of riverine DOM was removed, likely by bio- and photo-degradation. We estimate that the removal rate of terrestrial DOM in the Baltic Sea (Bothnian Bay to the Danish Straits/Kattegat area) is 1.6–1.9 Tg C per year which is 43–51% of the total riverine input. The export of terrestrial DOM from the Danish Straits/Kattegat area toward the North Sea is 1.8–2.1 Tg C per year. Due to the long residence time of terrestrial DOM in the Baltic Sea (total of ca. 12 years), seasonal variations caused by bio- and photo-transformations and riverine discharge are dampened, resulting in a relatively invariant DOM molecular and isotopic signature exported to the North Sea. In the deep stagnant basins of the Baltic Sea, the DOM composition and dissolved organic nitrogen concentrations changed seasonally, likely because of vertical particle transport and subsequent degradation releasing DOM. DOM in the deep anoxic basins was also enriched in sulfur-containing organic molecules, pointing to abiotic sulfurization of DOM under sulfidic conditions
    • …
    corecore