23,262 research outputs found
SVIM: Structural Variant Identification using Mapped Long Reads
Motivation: Structural variants are defined as genomic variants larger than 50bp. They have been shown to affect more bases in any given genome than SNPs or small indels. Additionally, they have great impact on human phenotype and diversity and have been linked to numerous diseases. Due to their size and association with repeats, they are difficult to detect by shotgun sequencing, especially when based on short reads. Long read, single molecule sequencing technologies like those offered by Pacific Biosciences or Oxford Nanopore Technologies produce reads with a length of several thousand base pairs. Despite the higher error rate and sequencing cost, long read sequencing offers many advantages for the detection of structural variants. Yet, available software tools still do not fully exploit the possibilities. Results: We present SVIM, a tool for the sensitive detection and precise characterization of structural variants from long read data. SVIM consists of three components for the collection, clustering and combination of structural variant signatures from read alignments. It discriminates five different variant classes including similar types, such as tandem and interspersed duplications and novel element insertions. SVIM is unique in its capability of extracting both the genomic origin and destination of duplications. It compares favorably with existing tools in evaluations on simulated data and real datasets from PacBio and Nanopore sequencing machines. Availability and implementation: The source code and executables of SVIM are available on Github: github.com/eldariont/svim. SVIM has been implemented in Python 3 and published on bioconda and the Python Package Index. Supplementary information: Supplementary data are available at Bioinformatics online
Quantum Flux and Reverse Engineering of Quantum Wavefunctions
An interpretation of the probability flux is given, based on a derivation of
its eigenstates and relating them to coherent state projections on a quantum
wavefunction. An extended definition of the flux operator is obtained using
coherent states. We present a "processed Husimi" representation, which makes
decisions using many Husimi projections at each location. The processed Husimi
representation reverse engineers or deconstructs the wavefunction, yielding the
underlying classical ray structure. Our approach makes possible interpreting
the dynamics of systems where the probability flux is uniformly zero or
strongly misleading. The new technique is demonstrated by the calculation of
particle flow maps of the classical dynamics underlying a quantum wavefunction.Comment: Accepted to EP
On the efficient computation of recurrence relations
A new parallel algorithm for the solution of a general linear recurrence is described. Its relation to the work of Kogge and Stone is discussed
Spectral analysis of 636 white dwarf - M star binaries from the Sloan Digital Sky Survey
We present a catalog of 857 white dwarf (WD)-M binaries from the sixth data
release (DR6) of the Sloan Digital Sky Survey (SDSS), most of which were
previously identified. For 636 of them, we complete a spectral analysis and
derive the basic parameters of their stellar constituents and their distances
from Earth. We attempt to measure fundamental parameters of these systems by
completing spectral analyses. We use a Chi^2 minimization technique to
decompose each combined spectrum and derive independent parameter estimates for
its components. Forty-one of the stellar duets in our spectroscopic sample are
optically resolved in their respective SDSS images. For these systems, we also
derive a minimum true spatial separation and a lower limit to their orbital
periods, typically which are some 10^4 yr. Spectra of 167 stellar duets show
significant hydrogen emission and in most cases no additional He i or He ii
features. We also find that 20 of the 636 WDs are fitted to be DOs, with 16
measured to have T_eff around 40,000 K. Furthermore, we identify 70 very
low-mass objects, which are secondaries of masses smaller than about 0.1 solar
masses, to be candidate substellar companions. Although various selection
effects may play a role, the fraction 6.4 % of WD-M star binaries with orbital
separations of around 500 AU is a criterion for evolutionary models of stellar
binary systems. Active M dwarfs are likely present in 155 Balmer-emitting
systems, corresponding to a fraction of 24.4 %. The excess of cool DOs is most
likely due to additional WDs in the DB-DO T_eff range, for which no detailed
fitting was completed. The trend of the M stars being closer to Earth than the
WD component is probably due to an underestimation of the theoretical M star
radii.Comment: accepted by A&A October 3, 2008, 15 pages, 16 figures, 3 tables; v2,
minor grammatical changes, essential changes in Sect. 5.
Towards a holographic realization of the quarkyonic phase
Large-N_c QCD matter at intermediate baryon density and low temperatures has
been conjectured to be in the so-called quarkyonic phase, i.e., to have a quark
Fermi surface and on top of it a confined spectrum of excitations. It has been
suggested that the presence of the quark Fermi surface leads to a homogeneous
phase with restored chiral symmetry, which is unstable towards creating
condensates breaking both the chiral and translational symmetry. Motivated by
these exotic features, we investigate properties of cold baryonic matter in the
single flavor Sakai-Sugimoto model searching for a holographic realization of
the quarkyonic phase. We use a simplified mean-field description and focus on
the regime of parametrically large baryon densities, of the order of the square
of the 't Hooft coupling, as they turn out to lead to new physical effects
similar to the ones occurring in the quarkyonic phase. One effect, the
appearance of a particular marginally stable mode breaking translational
invariance and linked with the presence of the Chern-Simons term in the flavor
brane Lagrangian, is known to occur in the deconfined phase of the
Sakai-Sugimoto model, but turns out to be absent here. The other, completely
new phenomenon that we, preliminarily, study using strong simplifying
assumptions are density-enhanced interactions of the flavor brane gauge field
with holographically represented baryons. These seem to significantly affect
the spectrum of vector and axial mesons and might lead to approximate chiral
symmetry restoration in the lowest part of the spectrum, where the mesons start
to qualitatively behave like collective excitations of the dense baryonic
medium. We discuss the relevance of these effects for holographic searches of
the quarkyonic phase and conclude with a discussion of various subtleties
involved in constructing a mean-field holographic description of a dense
baryonic medium.Comment: 31 pages, 16 figures; v2: inset plot in Fig. 10 removed, coloring in
Fig. 13 fixed, typos fixed, matches published versio
Space probe/satellite ejection apparatus for spacecraft
An ejection apparatus for spinning and propelling objects for ejection from a spacecraft at a desired velocity and rotational speed is discussed. The apparatus includes a launch cradle on which the space object to be ejected rests. The cradle is rotatably supported by a central hub secured to the upper end of the pneumatic cylinder piston shaft. Release mechanisms consisting of a retractable pin and locking lug is utilized to hold the cradle and object to be ejected. The release mechanism has a fixed barrier member which holds the retractable pin in engagement with the locking lug until release by upward movement of the launch cradle beyond the barrier height
Synthesis of atactic and stereoregular vinylaromatic polymers and a study of their reactions with alkali metals Final report
Synthesis and characteristics of atactic and stereoregular vinylaromatic polymers and their reactions with alkali metal
Polyakov Loops and Magnetic Screening from Monopoles in SU(2) Lattice Gauge Theory
We present results from magnetic monopoles in lattice gauge theory at
finite temperature. The lattices are , for
, at . Quantities discussed are: the spacial
string tension, Polyakov loops, and the screening of timelike and spacelike
magnetic currents.Comment: 5 pages, four Postscript figures, Late
Modelling the quark propagator
The quark propagator is at the core of lattice hadron spectrum calculations
as well as studies in other nonperturbative schemes. We investigate the quark
propagator with an improved staggered action (Asqtad) and an improved gluon
action, which provides good quality data down to small quark masses. This is
used to construct ans\"{a}tze suitable for model hadron calculations as well as
adding to our intuitive understanding of QCD.Comment: Lattice2002(spectrum
- …
