AD/A-002 248

ON THE EFFICIENT COMPUTATION OF RECURRENCE RELATIONS Don E. Heller Carnegie-Mellon University

Prepared for:

. . . .

Ė

177 - L

Office of Naval Research National Science Foundation National Aeronautics and Space Administration

13 June 1974

DISTRIBUTED BY:

U. S. DEPARTMENT OF COMMERCE

UNCLASSIFUTED		
		READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE		BEFORE COMPLETING FORM
I REPORT NUMITE	2 GOVE ACCESSION NO	ADIA-002248
E TITLE (and Submitte)		5. TYPE OF REPORT & PERIOD COVERIO
ON THE REFICIENT COMPUTATION OF RECURRENCE RELATIONS		Final
		6. PERFORMING ORG, HEPORT NUMBER
7. AUTHOR(*) Don E. Heller		8. CONTRACT OR GRANT NUMBLA(*) C
		NOO14-67-A-0314-0010 Nr 044-422; CMU 1-51039
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Carnegie-Mellon University		
Department of Computer Scien	ce	
Pittsburgh. PA 15213 1. CONTROLLING OFFICE NAME AND ADDRE	· · ·	12. REPORT DATE
Office of Naval Research		June 13, 1974
Arlington, VA 22217		13. NUMBER OF PAGES
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)		15. SECURITY CLASS. (of this report)
		UNCLASSIFIED
		154. DECLASSIFICATION/DOWNGRADING SCHEDULE
7. DISTRIBUTION STATEMENT (of the obstract	entered in Block 20, 11 dillerent fro	a Report)
8. SUPPLEMENTARY NOTES		
9. KEY WORDS (Continue on reverse alde il neci	seery and identify by block number)	
	Reproduced by NATIONAL TECHNICAL INFORMATION SERVICE US Department of Commerce Springfield, VA. 22151	
A new paraller algorithm described. Its relation to t	for the solution of a	e general linear recurrence is stone is discussed.
	•	
D FORM 1473 EDITION OF THOVES	S ONSOLETE	UNCLASSIFIED

1

ċ

SECURITY CLASSIFICATION OF THIS PAGE (Mon Date Entered)

ON THE EFFICIENT COMPUTATION OF RECURRENCE RELATIONS

Don E. Heller

June 13, 1974

Carnegie-Mellon University Department of Computer Science Pittsburgh, Pa. 15213

This paper was prepared in part while the author was in residence at ICASE, NASA Langley Research Center under NASA Grant NGR47-102-001 and in part at Carnegie-Mellon University under National Science Foundation Grant GJ32111 and Office of Naval Research Contract N0014-67-A-0314-0010, NR 044-422.

1 INA DISTRIBUTION STATEMENT Approved for public relea Distribution Unitedited

Ì

;;

•

ON THE EFFICIENT COMPUTATION OF RECURRENCE RELATIONS

Recently much progress has been made in the formulation of parallel algorithms which compute the terms of a sequence (y_i) defined by

$$y_{i} = f_{i}(y_{0}, y_{1}, \dots, y_{i-1}), i = 1, \dots, N.$$

The germinal point of this work is the now well-known "log-sum" algorithm which computes $\Sigma_{i=1}^{N} a_{i}$ in $\lceil \log_{2} N \rceil$ parallel addition steps, given $\lceil N/2 \rceil$ processors. Here the underlying recurrence is

 $y_0 = 0$ $y_1 = v_{1-1} + a_1, i = 1,...,N;$

y_N is the desired result.

 $y_0 = b_0$

Two apparently distinct generalizations of the log-sum algorithm have appeared. Kogge and Stone [1] have considered the case

(2)

(1)

 $y_{i} = f(b_{i}, g(a_{i}, y_{i-1})), i = 1, ..., N,$

where f is associative, g distributes over f, and there is a function h such that g(x,g(y,z)) = g(h(x,y),z). Seemingly restricted to first order recurrences, by a suitable mapping mth order recurrences are also treated. Heller [2] has studied the case

(3)

$$y_0 = h_0$$

 $y_1 = \sum_{j=0}^{i-1} a_{ij}y_j + h_i, i = 1, ..., N.$

This problem is equivalent to the solution of a lower triangular linear system of equations. In this note we give an improved parallel algorithm for (3) and show a relationship between the two generalizations.

1-

Rewrite (3) as (I-L)y=h, where L is a strictly lower triangular matrix, and I is the identity. y and h are (N + 1)-vectors. Since $L^{N+1} = 0$.

$$(I-L)^{-1} = (I+L+L^{2}+\cdots+L^{N})$$

= $(I+L^{2^{m}})(1+L^{2^{m-1}})\cdots(I+L)$
there $2^{m} \le N \le 2^{m+1}$. Thus we have the algorithm:
 $x_{0} - h; LI - I_{1}^{2};$
 $\underbrace{for i - 0 \ step \ 1 \ until \ m-1 \ do}_{\{x_{i+1} - (I+L^{2^{i}}) \ x_{i}; L^{2^{i+1}} - L^{2^{i}} \ L^{2^{i}}; LI - (I+L^{2^{i}}) LI_{1}^{2^{i}};$
 $LI - (I+L^{2^{i}}) LI_{1}^{2^{i}};$
 $\{y - (I+L^{2^{m}}) \ x_{m}; LI - (I+L^{2^{m}}) LI_{1}^{2^{i}}.$

The algorithm is sequential in i, and within the braces operations are performed concurrently. When completed, we have the desired y, and $(I-L)^{-1}$ is stored in LI. LI may now be used to compute y' given h'. It is easily shown that, with $O(N^3)$ processors, the calculation may be done in $m^2 + 3m + 1$ parallel steps of addition and multiplication. (We use the fact that matrix products may be computed in logarithmic time with sufficiently many processors.) The previous result required $O(N^4)$ processors and $m^2 + 4m + 2$ operation steps.

We now turn to the Kogge - Stone results. Rewrite (2) as $y_0 = b_0$

(2')

 $y_i = a_i Q_{i-1} Q_{i}, i=1,...,N.$

Here g is replaced by the binary operation Q, and f by θ . Assume that • is associative, Q distributes over θ , and there is a Q' such that a Q (b Q c) = (a Q' b) Q c. Let α be a symbol distinct from all others, and define $\alpha \Phi x = x \Phi \alpha = x, \alpha \Phi x = x \Phi \alpha \quad \alpha$ for all x. Define an

2

operator L on (N+1)-vectors by

$$(Lz)_0 = \alpha$$

 $(Lz)_i = a_i \ 0 \ z_{i-1}, \ i = 1,...,N.$

Then $y = Ly \oplus b$ by (2'). It is observed that L is an additive operator since **a** distributes over **e** and by the definition of α . Moreover, $L^{N+1} = \alpha$, since for any z, and i = 1,..., N+1, $(L^{i}z)_{0} = \alpha$ and for $l \leq j < i$, $(L^{i}z)_{j} = \alpha$ $(L(L^{i-1}z))_i = a_i \oplus (L^{i-1}z)_{i-1} = a_i \oplus \alpha = \alpha$. Therefore, $y = Ly \in b = L(Ly \otimes b) \oplus b = L^2y \oplus (L \oplus I)b$ $= \dots = L^{N+1} y \in (L^N \oplus L^{N-1} \oplus \dots \oplus I)b$ $= (L^{N} \oplus L^{N-1} \oplus \cdots \oplus I)b$ $= (L^{2^m} \oplus I)(L^{2^{m-1}} \oplus I) \cdots (L \oplus I)b.$ Since $L^3 = (L^2)L = L(L^2)$, Ω' behaves as an associative operation, and so $(L^{2^{1}}y)_{i} = \alpha, 0 \le j \le 2^{i}$ $= a_{j} \otimes (a_{j-1} \otimes (... \otimes (a_{j-2}i_{+1} \otimes y_{j-2}i))))$ = $(a_j \in a_{j-1} \otimes a_{j-2}, a_{j-2},$ Similarly, $(L^{2^{i+i}}y)_{i} = \alpha, 0 \le j \le 2^{i+1}$ =[($a_{j} \otimes \cdots \otimes a_{j-2}^{i} + 1$) $\mathbf{P}'(a_{j-2}i \mathbf{P}' \cdot \cdot \cdot \mathbf{P}' a_{j-2}i+1+1)] \mathbf{P} y_{j-2}i+1 2^{i+1} \leq j \leq N,$

and the "coefficients" of $L^{2^{i+1}}$ may be computed from the "coefficients" of $L^{2^{i}}$ in one \mathbb{P} ' operation step. Thus an algorithm similar to the previous one may be used to compute y. If the operator $(L^{N} \dots \mathbb{P}I)$ is not formed, the computation time is $O(\log_2 N)$ with O(N) processors. In fact, if $y' = Ly' \oplus b'$, it is less efficient to directly apply $(L^{N} \oplus \dots \oplus I)$ than to use the above method. The general recurrence (1) may be written as $y = L_1 y$, where L_1 is a strictly lower triangular operator in the sense that, for any z, $(L_1z)_i$ is independent of z_i, z_{i+1}, \dots, z_N . By an induction argument L_1^{N+1} is a constant operator, and so the solution may be found by $y = L_1^{n+1}z$ for any z. The special cases (2) and (3) allow the simple computation of the powers of L_1 when $L_1z = Lz \oplus b$, and L is linear. Kung [3] has shown that for non-linear recurrences, it is not possible, in general, to decrease the computation time by more than a constant factor by the use of parallelism.

REFERENCES

1, Kogge, P. M. and Stone, H. S., "A Parallel Algorithm for the Efficient Solution of a General Class of Recurrence Equations." IEEE Trans. on Computers, C-22 (1973), pp. 786-793.

 Heller, D., "A Determinant Theorem with Applications to Parallel Algorithms." To appear, SIAM Journal Num, Anal., 1974.

Kung, H. T., "New Algorithms and Lower Bounds for the Parallel
 Evaluation of Certain Rational Expressions." Proceedings, ACM Symposium
 on Theory of Computing, 1974.

T