ON THE EFFICIENT COMPUTATION OF RECURRENCE RELATIONS
Don E. Heller
Carnegie-Mellon University

Prepared for:
Office of Naval Research
National Science Foundation
National Aeronautics and Space Administration

13 June i974

DISTRIBUTED BY:

Mational Technical Information Service
U. S. DEPARTMENT OF COMMERCE

HNCIA:S:H11TR

17. DISTRIBUTIOH STATEMENT (Of the abetrect entered in Eleck 20. If differmif frem Repoet)
18. SUPPLEMENTARY NOTES
19. KEY VORDS (Continue on reverse alde If necesaary and ideniffy by block number)

eoproduced by NATIONAL TECHNICAL INFORMATION SERVICE US Department of Commerc

20. ABSTFACT (Continue on rer mem alde If necesmery ons idenaif by block number)

A new parallel alyurithm for the solution of a feneral linear recurrence is described. Its relation to the work of Kogne and Stone is discussed.

ON THE EFFICIENT COMPUTATION OF RECURRENCE RELATIONS

Don E. Heller

June 13, 1974

Carnegie-Mellon University Department of Computer Science Pittsburgh, Pa. 15213

This paper was prepared in part while the author was in residence at iCASE, NASA Langley Research Center under NASA Grant NGR47-102-001 and in part at Carnegie-Mellon University under National Science Foundation Grant G32111 and Office of Naval Research Contract N0g14-67-A-0314-0010, NR 044-422.

Recently much progress has been made in the formulation of parallel algorithms which compute the terms of a sequence (y_{i}) defined by

$$
\begin{equation*}
y_{0} \text { given. } \tag{1}
\end{equation*}
$$

$$
y_{i}=f_{i}\left(y_{0}, y_{1}, \ldots, y_{i-1}\right), i=1, \ldots, N .
$$

The germinal point of this work is the now well-known "log-sum" algorithm which computes $\sum_{i=1}^{N} \mathbf{a}_{\mathbf{i}}$ in $\left\lceil\log _{2} N\right\rceil$ parallel addition steps, given $[\mathrm{N} / 2\rceil$ processors. Here the underlying recurrence is

$$
\begin{aligned}
& y_{0}=0 \\
& y_{i}=y_{i-1}+a_{i}, i=1, \ldots, N ;
\end{aligned}
$$

$\boldsymbol{y}_{\mathrm{N}}$ is the desired result.
Two apparently distinct generalizations of the log-sum algorithm have appeared, Kogge and Stone [1] have considered the case

$$
\begin{align*}
& y_{0}=b_{0} \tag{2}\\
& y_{i}=f\left(b_{i}, g\left(a_{i}, y_{i-1}\right)\right), i=1, \ldots, N,
\end{align*}
$$

where f is associative, g distributes over f, and there is a function h such that $g(x, g(y, z))=g(h(x, y), z)$. Seemingly restricted to first order recurrences, by a suitable mapping $m^{\text {th }}$ order recurrences are alsc treated. Heller [2] has studied the case

$$
\begin{align*}
& y_{0}=h_{0} \\
& y_{i}=\sum_{j=0}^{i-1} a_{i j} y_{j}+h_{i}, i=1, \ldots, N . \tag{3}
\end{align*}
$$

This problem is equivalent to the solution of a lower triangular linear system of equations, In this note we give an improved parallel algorithm for (3) and show a relationship between the two generalizations.

Rewrite (3) as (I-L)y=h, where L is a strictly lower triangular matrix, and I is the identity. y and h are $(N+1)$-vectors. Since $L^{N+1}=0$,

$$
\begin{aligned}
(I-L)^{-1} & =\left(I+L+L^{2}+\cdots+L^{N}\right) \\
& =\left(I+L^{2 m}\right)\left(1+L^{2 m-1}\right) \cdots(I+L)
\end{aligned}
$$

where $2^{m} \leq N<2^{m+1}$. Thus we have the algorithm:

$$
\begin{aligned}
& \left\{x_{0}-h ; L I-I ;\right. \\
& \text { for } i-0 \text { step } 1 \frac{\text { until }}{} \mathrm{m}-\mathrm{i} \text { do } \\
& \left\{x_{i+1}-\left(I+L^{2^{i}}\right) x_{i} ;\right. \\
& L^{2^{i+1}}-L^{2^{i}} L^{2^{i}} ; \\
& \left.L I-\left(I+L^{2}\right) L I\right\} ; \\
& \left\{y-\left(I+L^{2^{m}}\right) x_{m} ; L I-\left(I+L^{2^{m}}\right) L I\right\} .
\end{aligned}
$$

The algorithm is sequential in i, and within the braces operations are performed concurrently. When completed, we have the desired y, and $(1-L)^{-1}$ is stored in Li. LI may now be used to compute y^{\prime} given h^{\prime}. It is easily shown that, with $O\left(N^{3}\right)$ processors, the calculation may be done in $m^{2}+3 m+1$ parallel steps of addition and multiplication. (We use the fact that matrix products may be computed in logarithmic time with sufficiently many processors.) The previous result required $O\left(N^{4}\right)$ processors and $m^{2}+4 m+2$ operation steps.

We now turn to the Kogge - Stone results. Rewrite (2) as

$$
\begin{equation*}
y_{0}=b_{0} \tag{2'}
\end{equation*}
$$

$$
y_{i}=a_{i} \otimes y_{i-1} \otimes b_{i}, i=1, \ldots, N .
$$

Here g is replaced by the binary operation 0 , and f by 0 . Assume that 0 is associative, distributes over 0, and there is a $\boldsymbol{\theta}^{\prime}$ such that a@(b)c)=(a口b) c. I-et α be a symbol distinct from all others,

operator L on ($N+1$)-vectors by

$$
\begin{aligned}
& (L z)_{0}=\alpha \\
& (L z)_{i}=a_{i} \sum_{i-1}, i=1, \ldots, N .
\end{aligned}
$$

Then $y=L y$ b by (2'). It is observed that L is an additive operator since distributes over and by the definition of α. Moreover, $L^{N+1}=\alpha$, since for any z, and $i=1, \ldots, N+1,\left\langle L^{i} z\right)_{o}=\alpha$ and for $l \leq j<i,\left(L^{i} z\right)_{j}=$ $\left(L\left(L^{i-1} z\right)\right)_{j}=a_{j}\left(L^{i-1} z\right)_{j-1}=a_{j} \alpha=\alpha$. Therefore,

$$
\begin{aligned}
y & =L y \otimes b=L(L y \oplus b) \oplus b=L^{2} y \oplus(L \oplus I) b \\
& =\cdots=L^{N+1} y \bullet\left(L^{N} \otimes L^{N-1} \oplus \cdots \theta 1\right) b \\
& =\left(L^{N} \bullet L^{N-1} \cdots \cdots I\right) b \\
& =\left(L^{2^{m}} \bullet I\right)\left(L^{2^{m-1}} \oplus I\right) \cdots(L \otimes I) b .
\end{aligned}
$$

Since $L^{3}=\left(L^{2}\right) L=L\left(L^{2}\right)$, behaves as an associative operation, and so

$$
\left(L^{2^{i}} y\right)_{j}=\alpha, 0 \leq j<2^{i}
$$

$$
=a_{j}\left(a_{j-1}\left(\ldots\left(a_{j-2^{i}+1} y_{j-2}\right)^{\cdots}\right)\right.
$$

Similarly,

$$
=\left(a_{j} m_{j-1} a^{\prime} a_{j-2^{i}+1} y_{j-2^{3}}, 2^{i} \leq j \leq N .\right.
$$

$$
\begin{aligned}
\left(L^{2^{i+1}} y\right)_{j}= & \alpha, 0 \leq j<2^{i+1} \\
= & {\left[\left(a_{j} Q^{\prime \cdots} a^{\prime} a_{j-2}+1\right)\right.} \\
& \left.Q^{\prime}\left(a_{j-2} i g^{\prime} \cdots Q^{\prime} a_{j-2}+1+1\right)\right] y_{j-2}{ }^{i+1}, 2^{i+1} \leq j \leq N,
\end{aligned}
$$

and the "coefficients" of $L^{2^{i+1}}$ may be computed from the "coefficients" of $\mathrm{L}^{\mathbf{2}^{j}}$ in one operation step. Thus an algorithm similar to the previous one may be used to compute y. If the operator ($L^{N} \quad \cdots$) is not formed, the computation time is $0\left(\log _{2} N\right)$ with $O(N)$ prorassors. In fact, if $y^{\prime}=L y^{\prime} \cdot b^{\prime}$, it is less efficient to direct ${ }^{\text {º }} \boldsymbol{y}$ apply (L^{N} I) than to use the above method.

The general recurrence (1) may be written as $y=L_{1} y$, where L_{1} is a strictly lower triangular operater in the sense that, for any z, $\left(L_{1} z_{i}\right.$ is independent of $\mathbf{z}_{\mathbf{i}}, \mathbf{z}_{\mathbf{i}+1}, \cdots, \mathbf{z}_{N}$. By an induction argument $L_{1}{ }^{N+1}$ is a constant operator, and so the solution may be found by $y=L_{1}{ }^{n+1} z$ for any z. The special cases (2) and (3) allow the simple computation of the powers of L_{1} when $L_{1} z=L z \otimes b$, and L is linear. Kung [3] has shown that for non-linear recurrences, it is not possible, in general, to decrease the computation time by more than a constant factor by the use of parallelism.

REFERENCES

1. Kogge, P. M. and Stone, H, S., "A Parallel Algorithm for the Efficient Solution of a feneral Class of Recurrence Equations." IEEE Trans, on Computers, C-22 (1973), pp. 786-793.
2. Heller, D., "A Determinant Theorem with Applications to Parallel Algorithms." To appear, SIAM Journal Num, Anal., 1974.
3. Kung, H. T., "New Algorithms and Lower Bounds for the Parallel Evaluation of Certain Rational Expressions." Proceedings, ACM Symposium on Theory of Computing, 1974.
