405 research outputs found
Cool North European summers and possible links to explosive volcanic eruptions
Exactly dated tree-ring measurements such as ring width (TRW) and maximum latewood density (MXD), which are sensitive to summer temperatures, can provide possible routes to investigate the occurrence of hemispheric-wide cool summers that might be linked to explosive tropical volcanic eruptions. These measurements can provide much longer records than the instrumental period, enabling much longer periods to be assessed and offers the potential to look at much larger eruptions than recorded over the last 200years. This paper looks at TRW evidence from Northern Fennoscandia extending over the last 7500years, using two independently produced chronologies from northern Sweden and northern Finland. TRW is less responsive than MXD to cool summer temperatures, but MXD is only available for the last 2000years. Additionally, looking at a relatively small location, compared to the Northern Hemisphere average, adds considerable noise. Progress in this area is likely to be made by developing more millennial-long TRW series across northern high latitudes or being able to develop MXD series from the sub-fossil material, which comprises most of the samples prior to the last 1000years. The three most extreme negative values for the region for the last 2000years are 1601, 542, and 1837, although the latter is not extreme in a long instrumental record for the region. The most extreme year of all occurred in 330BC. Of the 20 most extreme negative years, nine occurred during the AD years with the remaining 11 occurring during the prior 5500years.</p
Recommended from our members
An ECOOP web portal for visualising and comparing distributed coastal oceanography model and in situ data
As part of a large European coastal operational oceanography project (ECOOP), we have developed a web portal for the display and comparison of model and in situ marine data. The distributed model and in situ datasets are accessed via an Open Geospatial Consortium Web Map Service (WMS) and Web Feature Service (WFS) respectively. These services were developed independently and readily integrated for the purposes of the ECOOP project, illustrating the ease of interoperability resulting from adherence to international standards. The key feature of the portal is the ability to display co-plotted timeseries of the in situ and model data and the quantification of misfits between the two. By using standards-based web technology we allow the user to quickly and easily explore over twenty model data feeds and compare these with dozens of in situ data feeds without being concerned with the low level details of differing file formats or the physical location of the data. Scientific and operational benefits to this work include model validation, quality control of observations, data assimilation and decision support in near real time. In these areas it is essential to be able to bring different data streams together from often disparate locations
Downscaling regional climate model outputs for the Caribbean using a weather generator
Locally relevant scenarios of daily weather variables that represent the best knowledge of the present climate and projections of future climate change are needed by planners and managers to inform management and adaptation to climate change decisions. Information of this kind for the future is only readily available for a few developed country regions of the world. For many less-developed regions, it is often difficult to find series of observed daily weather data to assist in planning decisions. This study applies a previously developed single-site weather generator (WG) to the Caribbean, using examples from Belize in the west to Barbados in the east. The purpose of this development is to provide users in the region with generated sequences of possible future daily weather that they can use in a number of impact sectors. The WG is first calibrated for a number of sites across the region and the goodness of fit of the WG against the daily station observations assessed. Particular attention is focussed on the ability of the precipitation component of the WG to generate realistic extreme values for the calibration or control period. The WG is then modified using change factors (CFs) derived from regional climate model projections (control and future) to simulate future 30-year scenarios centred on the 2020s, 2050s and 2080s. Changes between the control period and the three futures are illustrated not just by changes in average temperatures and precipitation amounts but also by a number of well-used measures of extremes (very warm days/nights, the heaviest 5-day precipitation total in a month, counts of the number of precipitation events above specific thresholds and the number of consecutive dry days)
Using ERA-Interim reanalysis for creating datasets of energy-relevant climate variables
The construction of a bias-adjusted dataset of climate variables at the near surface using ERA-Interim reanalysis is presented. A number of different, variable-dependent, bias-adjustment approaches have been proposed. Here we modify the parameters of different distributions (depending on the variable), adjusting ERA-Interim based on gridded station or direct station observations. The variables are air temperature, dewpoint temperature, precipitation (daily only), solar radiation, wind speed, and relative humidity. These are available on either 3 or 6 h timescales over the period 1979–2016. The resulting bias-adjusted dataset is available through the Climate Data Store (CDS) of the Copernicus Climate Change Data Store (C3S) and can be accessed at present from ftp://ecem.climate.copernicus.eu. The benefit of performing bias adjustment is demonstrated by comparinginitial and bias-adjusted ERA-Interim data against gridded observational fields
Hemispheric and large-scale land surface air temperature variations: An extensive revision and an update to 2010
Creating a proof-of-concept climate service to assess future renewable energy mixes in Europe: an overview of the C3S ECEM project
The EU Copernicus Climate Change Service (C3S) European Climatic Energy Mixes (ECEM) has produced, in close collaboration with prospective users, a proof-of-concept climate service, or Demonstrator, designed to enable the energy industry and policy makers assess how well different energy supply mixes in Europe will meet demand, over different time horizons (from seasonal to long-term decadal planning), focusing on the role climate has on the mixes. The concept of C3S ECEM, its methodology and some results are presented here.
The first part focuses on the construction of reference data sets for climate variables based on the ERA-Interim reanalysis. Subsequently, energy variables were created by transforming the bias-adjusted climate variables using a combination of statistical and physically-based models. A comprehensive set of measured energy supply and demand data was also collected, in order to assess the robustness of the conversion to energy variables. Climate and energy data have been produced both for the historical period (1979–2016) and for future projections (from 1981 to 2100, to also include a past reference period, but focusing on the 30 year period 2035–2065). The skill of current seasonal forecast systems for climate and energy variables has also been assessed.
The C3S ECEM project was designed to provide ample opportunities for stakeholders to convey their needs and expectations, and assist in the development of a suitable Demonstrator. This is the tool that collects the output produced by C3S ECEM and presents it in a user-friendly and interactive format, and it therefore constitutes the essence of the C3S ECEM proof-of-concept climate service
Comparing correction methods of RCM outputs for improving crop impact projections in the Iberian Peninsula for 21st century
Assessment of climate change impacts on crops in regions of complex orography such as the Iberian Peninsula (IP) requires climate model output which is able to describe accurately the observed climate. The high resolution of output provided by Regional Climate Models (RCMs) is expected to be a suitable tool to describe regional and local climatic features, although their simulation results may still present biases. For these reasons, we compared several post-processing methods to correct or reduce the biases of RCM simulations from the ENSEMBLES project for the IP. The bias-corrected datasets were also evaluated in terms of their applicability and consequences in improving the results of a crop model to simulate maize growth and development at two IP locations, using this crop as a reference for summer cropping systems in the region. The use of bias-corrected climate runs improved crop phenology and yield simulation overall and reduced the inter-model variability and thus the uncertainty. The number of observational stations underlying each reference observational dataset used to correct the bias affected the correction performance. Although no single technique showed to be the best one, some methods proved to be more adequate for small initial biases, while others were useful when initial biases were so large as to prevent data application for impact studies. An initial evaluation of the climate data, the bias correction/reduction method and the consequences for impact assessment would be needed to design the most robust, reduced uncertainty ensemble for a specific combination of location, crop, and crop management
Ethical issues, research and vulnerability : gaining the views of children and young people in residential care
Children and young people in residential care are some of the most vulnerable in our society. They may have experienced violence and physical, sexual or emotional abuse. They may be involved in offending or the misuse of drugs and alcohol. They are separated from their families and have to cope with living in a group situation with other young people and staff members. Children and young people in residential care also possess strengths, competencies and resilience. We have much to learn from their experiences and perspectives, both generally and surrounding their time in care. This paper will address the ethical issues which arise from gaining the views of children and young people in residential care, drawing on the experience of carrying out three studies in particular (Kendrick et al. 2004, The development of a residential unit working with sexually aggressive young men. In: H.G. Eriksson and T. Tjelflaat, eds. Residential care: horizons for the new century. Aldershot: Ashgate, 38-55; Docherty et al. 2006, Designing with care: interior design and residential child care. Farm7 and SIRCC. http://www.sircc.strath.ac.uk/publications/Designing_with_Care.pdf; Steckley, L. and Kendrick, A., 2005. Physical restraint in residential child care: the experiences of young people and residential workers. Childhoods 2005: Children and Youth in Emerging and Transforming Societies, University of Oslo, Norway, 29 June-3 July 2005, Steckley and Kendrick 2007, Young people's experiences of physical restraint in residential care: subtlety and complexity in policy and practice. In: M. Nunno, L. Bullard and D. Day, eds. For our own safety: examining the safety of high-risk interventions for children and young people. Washington, DC: Child Welfare League of America, forthcoming). The paper will discuss: information, consent and choice about involvement in the research; confidentiality, privacy and safety. It will also explore some of the more complex issues of ethical good practice which arise from researching children in their own living space. The negotiation of children's time and space must be approached carefully, with consideration of their rights and wishes. Sensitivity to children and young people's priorities and preoccupations must be paramount
DRIHM - An Infrastructure To Advance Hydro-Meteorological Research
One of the main challenges in hydro-meteorological research (HMR) is predicting the impact of weather and climate changes on the environment, society and economy, including local severe hazards such as floods and landslides. At the heart of this challenge lies the ability to have easy access to hydro-meteorological data and models, and facilitate the collaboration across discipline boundaries. Within the DRIHM project (Distributed Research Infrastructure for Hydro-Meteorology, www.drihm.eu, EC funded FP7 project 2011-2015) we develop a prototype e-Science environment to facilitate this collaboration and provide end-to-end HMR services (models, datasets, and post-processing tools) at the European level, with the ability to expand to global scale. The objectives of DRIHM are to lead the definition of a common long-term strategy, to foster the development of new HMR models, workflows and observational archives for the study of severe hydro-meteorological events, to promote the execution and analysis of high-end simulations, and to support the dissemination of predictive models as decision analysis tools. For this we implement a service portal to construct heterogeneous simulation workflows that can include deterministic and ensemble runs on a heterogeneous infrastructure consisting of HPC, grid and Windows cloud resources. Via another FP7 project called DRIHM2US (www.drihm2us.eu) we collaborate with the NSF funded SCIHM project (www.scihm.org) to build a wider international collaborative network. This contribution will provide a sketch of the DRIHM architecture and show some use cases such as the November 2011 Genoa flooding
Contribution mapping: a method for mapping the contribution of research to enhance its impact.
Background: At a time of growing emphasis on both the use of research and accountability, it is important for research funders, researchers and other stakeholders to monitor and evaluate the extent to which research contributes to better action for health, and find ways to enhance the likelihood that beneficial contributions are realized. Past attempts to assess research 'impact' struggle with operationalizing 'impact', identifying the users of research and attributing impact to research projects as source. In this article we describe Contribution Mapping, a novel approach to research monitoring and evaluation that aims to assess contributions instead of impacts. The approach focuses on processes and actors and systematically assesses anticipatory efforts that aim to enhance contributions, so-called alignment efforts. The approach is designed to be useful for both accountability purposes and for assisting in better employing research to contribute to better action for health.Methods: Contribution Mapping is inspired by a perspective from social studies of science on how research and knowledge utilization processes evolve. For each research project that is assessed, a three-phase process map is developed that includes the main actors, activities and alignment efforts during research formulation, production and knowledge extension (e.g. dissemination and utilization). The approach focuses on the actors involved in, or interacting with, a research project (the linked actors) and the most likely influential users, who are referred to as potential key users. In the first stage, the investigators of the assessed project are interviewed to develop a preliminary version of the process map and first estimation of research-related contributions. In the second stage, potential key-users and other informants are interviewed to trace, explore and triangulate possible contributions. In the third stage, the presence and role of alignment efforts is analyzed and the preliminary results are shared with relevant stakeholders for feedback and validation. After inconsistencies are clarified or described, the results are shared with stakeholders for learning, improvement and accountability purposes.Conclusion: Contribution Mapping provides an interesting alternative to existing methods that aim to assess research impact. The method is expected to be useful for research monitoring, single case studies, comparing multiple cases and indicating how research can better be employed to contribute to better action for health. © 2012 Kok and Schuit; licensee BioMed Central Ltd
- …
