55 research outputs found

    Probing the HIV-1 Genomic RNA Trafficking Pathway and Dimerization by Genetic Recombination and Single Virion Analyses

    Get PDF
    Once transcribed, the nascent full-length RNA of HIV-1 must travel to the appropriate host cell sites to be translated or to find a partner RNA for copackaging to form newly generated viruses. In this report, we sought to delineate the location where HIV-1 RNA initiates dimerization and the influence of the RNA transport pathway used by the virus on downstream events essential to viral replication. Using a cell-fusion-dependent recombination assay, we demonstrate that the two RNAs destined for copackaging into the same virion select each other mostly within the cytoplasm. Moreover, by manipulating the RNA export element in the viral genome, we show that the export pathway taken is important for the ability of RNA molecules derived from two viruses to interact and be copackaged. These results further illustrate that at the point of dimerization the two main cellular export pathways are partially distinct. Lastly, by providing Gag in trans, we have demonstrated that Gag is able to package RNA from either export pathway, irrespective of the transport pathway used by the gag mRNA. These findings provide unique insights into the process of RNA export in general, and more specifically, of HIV-1 genomic RNA trafficking

    Induction of interferon-stimulated genes on the IL-4 response axis by Epstein-Barr virus infected human b cells; relevance to cellular transformation.

    Get PDF
    Epstein-Barr virus (EBV) is an oncogenic virus that is associated with the pathogenesis of several human lymphoid malignancies, including Hodgkin's lymphoma. Infection of normal resting B cells with EBV results in activation to lymphoblasts that are phenotypically similar to those generated by physiological stimulation with CD40L plus IL-4. One important difference is that infection leads to the establishment of permanently growing lymphoblastoid cell lines, whereas CD40L/IL-4 blasts have finite proliferation lifespans. To identify early events which might later determine why EBV infected blasts go on to establish transformed cell lines, we performed global transcriptome analyses on resting B cells and on EBV and CD40L/IL-4 blasts after 7 days culture. As anticipated there was considerable overlap in the transcriptomes of the two types of lymphoblasts when compared to the original resting B cells, reflecting common changes associated with lymphocyte activation and proliferation. Of interest to us was a subset of 255 genes that were differentially expressed between EBV and CD40L/IL-4 blasts. Genes which were more highly expressed in EBV blasts were substantially and significantly enriched for a set of interferon-stimulated genes which on further in silico analyses were found to be repressed by IL-4 in other cell contexts and to be up-regulated in micro-dissected malignant cells from Hodgkin's lymphoma biopsies when compared to their normal germinal center cell counterparts. We hypothesized that EBV and IL-4 were targeting and discordantly regulating a common set of genes. This was supported experimentally in our B cell model where IL-4 stimulation partially reversed transcriptional changes which follow EBV infection and it impaired the efficiency of EBV-induced B cell transformation. Taken together, these data suggest that the discordant regulation of interferon and IL-4 pathway genes by EBV that occurs early following infection of B cells has relevance to the development or maintenance of an EBV-associated malignancy

    Movement consistency during repetitive tool use action

    Get PDF
    The consistency and repeatability of movement patterns has been of long-standing interest in locomotor biomechanics, but less well explored in other domains. Tool use is one of such a domain; while the complex dynamics of the human-tool-environment system have been approached from various angles, to date it remains unknown how the rhythmicity of repetitive tool-using action emerges. To examine whether the spontaneously adopted movement frequency is a variable susceptible to individual execution approaches or emerges as constant behaviour, we recorded sawing motion across a range of 14 experimental conditions using various manipulations. This was compared to free and pantomimed arm movements. We found that a mean (SD) sawing frequency of 2.0 (0.4) Hz was employed across experimental conditions. Most experimental conditions did not significantly affect the sawing frequency, signifying the robustness of this spontaneously emerging movement. Free horizontal arm translation and miming of sawing was performed at half the movement frequency with more than double the excursion distance, showing that not all arm movements spontaneously emerge at the observed sawing parameters. Observed movement frequencies across all conditions could be closely predicted from movement time reference data for generic arm movements found in the Methods Time Measurement literature, highlighting a generic biomechanical relationship between the time taken for a given distance travelled underlying the observed behaviour. We conclude that our findings lend support to the hypothesis that repetitive movements during tool use are executed according to generic and predictable musculoskeletal mechanics and constraints, albeit in the context of the general task (sawing) and environmental constraints such as friction, rather than being subject to task-specific control or individual cognitive schemata

    Microbiological colonization of peripheral venous catheters : a prospective observational study in a Swedish county hospital

    No full text
    Background: Most peripheral venous catheters (PVCs) used in Scandinavia are fitted with an injection port, creating an open PVC system. This port is difficult to disinfect, which may lead to the introduction of micro-organisms upon use. Aim: To investigate the prevalence of microbiological colonization of the injection port and internal lumen of ported PVCs with a minimum dwell time of 48 h at sample collection. Methods: Adult patients admitted to different medical and surgical departments and the intensive care unit were invited to participate in this prospective observational study. With the PVC in situ, the injection port and internal lumen were swabbed and cultured separately. Demographic and clinical data were collected to compare patients with colonized and non-colonized PVCs. Findings: In total, 300 PVCs from 300 patients were analysed. Of these, 33 patients (11.0%) had at least one positive culture. The colonization locations were as follows: port only, 26 (8.7%); internal lumen only, 5 (1.7%); and port and internal lumen, 2 (0.7%). The colonization rate was significantly higher in the injection port than in the internal lumen (P<0.0001). A ported PVC inserted in the hand incurred a significant risk of colonization (P=0.03). The odds ratio for colonization among patients in the infectious diseases department was 0.1 (95% confidence interval 0.1-1; P<0.06) compared with patients in the medical department. Conclusion: This study showed that 11% of ported PVCs were colonized by micro-organisms, with the vast majority (8.7%) of colonization occurring in the injection port. Clinical trial registration: ClinicalTrials.gov; ID NCT03351725
    • …
    corecore