2,193 research outputs found
State-of-the-art techniques for calculating spectral functions in models for correlated materials
The dynamical mean field theory (DMFT) has become a standard technique for
the study of strongly correlated models and materials overcoming some of the
limitations of density functional approaches based on local approximations. An
important step in this method involves the calculation of response functions of
a multiorbital impurity problem which is related to the original model.
Recently there has been considerable progress in the development of techniques
based on the density matrix renormalization group (DMRG) and related matrix
product states (MPS) implying a substantial improvement to previous methods. In
this article we review some of the standard algorithms and compare them to the
newly developed techniques, showing examples for the particular case of the
half-filled two-band Hubbard model.Comment: 8 pages, 4 figures, to be published in EPL Perspective
Evidence of quantum criticality in the doped Haldane system Y2BaNiO5
Experimental bulk susceptibility X(T) and magnetization M(H,T) of the
S=1-Haldane chain system doped with nonmagnetic impurities, Y2BaNi1-xZnxO5
(x=0.04,0.06,0.08), are analyzed. A numerical calculation for the low-energy
spectrum of non-interacting open segments describes very well experimental data
above 4 K. Below 4 K, we observe power-law behaviors, X(T)=T^-alpha and
M(H,T)/T^(1-alpha)=f(alpha,(H/T)), with alpha (<1) depending on the doping
concentration x.This observation suggests the appearance of a gapless quantum
phase due to a broad distribution of effective couplings between the
dilution-induced moments.Comment: 4 pages, 3 figure
Spin order in the one-dimensional Kondo and Hund lattices
We study numerically the one-dimensional Kondo and Hund lattices consisting
of localized spins interacting antiferro or ferromagnetically with the
itinerant electrons, respectively. Using the Density Matrix Renormalization
Group we find, for both models and in the small coupling regime, the existence
of new magnetic phases where the local spins order forming ferromagnetic
islands coupled antiferromagnetically. Furthermore, by increasing the
interaction parameter we find that this order evolves toward the
ferromagnetic regime through a spiral-like phase with longer characteristic
wave lengths. These results shed new light on the zero temperature magnetic
phase diagram for these models.Comment: PRL, to appea
Mott transition in the Hubbard model away from particle-hole symmetry
We solve the Dynamical Mean Field Theory equations for the Hubbard model away
from the particle-hole symmetric case using the Density Matrix Renormalization
Group method. We focus our study on the region of strong interactions and
finite doping where two solutions coexist. We obtain precise predictions for
the boundaries of the coexistence region. In addition, we demonstrate the
capabilities of this precise method by obtaining the frequency dependent
optical conductivity spectra.Comment: 4 pages, 4 figures; updated versio
Cardiovascular disease risk factor responses to a type 2 diabetes care model including nutritional ketosis induced by sustained carbohydrate restriction at 1 year: An open label, non-randomized, controlled study
Additional file 1: Table S1. Detailed baseline characteristics for participants in the continuous care intervention (CCI) and usual care (UC) groups
Long-term effects of a novel continuous remote care intervention including nutritional ketosis for the management of type 2 diabetes: A 2-year non-randomized clinical trial
The Density Matrix Renormalization Group applied to single-particle Quantum Mechanics
A simplified version of White's Density Matrix Renormalization Group (DMRG)
algorithm has been used to find the ground state of the free particle on a
tight-binding lattice. We generalize this algorithm to treat the tight-binding
particle in an arbitrary potential and to find excited states. We thereby solve
a discretized version of the single-particle Schr\"odinger equation, which we
can then take to the continuum limit. This allows us to obtain very accurate
results for the lowest energy levels of the quantum harmonic oscillator,
anharmonic oscillator and double-well potential. We compare the DMRG results
thus obtained with those achieved by other methods.Comment: REVTEX file, 21 pages, 3 Tables, 4 eps Figure
- …
