6,413 research outputs found
Monte Carlo simulations of air showers in atmospheric electric fields
The development of cosmic ray air showers can be influenced by atmospheric
electric fields. Under fair weather conditions these fields are small, but the
strong fields inside thunderstorms can have a significant effect on the
electromagnetic component of a shower. Understanding this effect is
particularly important for radio detection of air showers, since the radio
emission is produced by the shower electrons and positrons. We perform Monte
Carlo simulations to calculate the effects of different electric field
configurations on the shower development. We find that the electric field
becomes important for values of the order of 1 kV/cm. Not only can the energy
distribution of electrons and positrons change significantly for such field
strengths, it is also possible that runaway electron breakdown occurs at high
altitudes, which is an important effect in lightning initiation.Comment: 24 pages, 19 figures, accepted for publication in Astroparticle
Physic
Simulation of air shower image in fluorescence light based on energy deposits derived from CORSIKA
Spatial distributions of energy deposited by an extensive air shower in the
atmosphere through ionization, as obtained from the CORSIKA simulation program,
are used to find the fluorescence light distribution in the optical image of
the shower. The shower image derived in this way is somewhat smaller than that
obtained from the NKG lateral distribution of particles in the shower. The size
of the image shows a small dependence on the primary particle type.Comment: 36 pages, 4 tables, 12 figure
Simulation of Ultra-High Energy Photon Propagation in the Geomagnetic Field
The identification of primary photons or specifying stringent limits on the
photon flux is of major importance for understanding the origin of ultra-high
energy (UHE) cosmic rays. We present a new Monte Carlo program allowing
detailed studies of conversion and cascading of UHE photons in the geomagnetic
field. The program named PRESHOWER can be used both as an independent tool or
together with a shower simulation code. With the stand-alone version of the
code it is possible to investigate various properties of the particle cascade
induced by UHE photons interacting in the Earth's magnetic field before
entering the Earth's atmosphere. Combining this program with an extensive air
shower simulation code such as CORSIKA offers the possibility of investigating
signatures of photon-initiated showers. In particular, features can be studied
that help to discern such showers from the ones induced by hadrons. As an
illustration, calculations for the conditions of the southern part of the
Pierre Auger Observatory are presented.Comment: 41 pages, 9 figures, added references in introduction, corrected
energy in row 1 of Table 3, extended caption of Table
Acoustic tests of duct-burning turbofan jet noise simulation: Comprehensive data report. Volume 2: Model design and aerodynamic test results
The selection procedure is described which was used to arrive at the configurations tested, and the performance characteristics of the test nozzles are given
Acoustic tests of duct-burning turbofan jet noise simulation
The results of a static acoustic and aerodynamic performance, model-scale test program on coannular unsuppressed and multielement fan suppressed nozzle configurations are summarized. The results of the static acoustic tests show a very beneficial interaction effect. When the measured noise levels were compared with the predicted noise levels of two independent but equivalent conical nozzle flow streams, noise reductions for the unsuppressed coannular nozzles were of the order of 10 PNdB; high levels of suppression (8 PNdB) were still maintained even when only a small amount of core stream flow was used. The multielement fan suppressed coannular nozzle tests showed 15 PNdB noise reductions and up to 18 PNdB noise reductions when a treated ejector was added. The static aerodynamic performance tests showed that the unsuppressed coannular plug nozzles obtained gross thrust coefficients of 0.972, with 1.2 to 1.7 percent lower levels for the multielement fan-suppressed coannular flow nozzles. For the first time anywhere, laser velocimeter velocity profile measurements were made on these types of nozzle configurations and with supersonic heated flow conditions. Measurements showed that a very rapid decay in the mean velocity occurs for the nozzle tested
Impact of Uncertainties in Hadron Production on Air-Shower Predictions
At high energy, cosmic rays can only be studied by measuring the extensive
air showers they produce in the atmosphere of the Earth. Although the main
features of air showers can be understood within a simple model of successive
interactions, detailed simulations and a realistic description of particle
production are needed to calculate observables relevant to air shower
experiments. Currently hadronic interaction models are the main source of
uncertainty of such simulations. We will study the effect of using different
hadronic models available in CORSIKA and CONEX on extensive air shower
predictions.Comment: 12 pages, 6 figures, to appear in the proceedings of International
Conference on Interconnection between High Energy Physics and Astroparticle
Physics: From Colliders to Cosmic Rays, Prague, Czech Republic, 7-13 Sep 200
Modeling RR Tel through the Evolution of the Spectra
We investigate the evolution of RR Tel after the outburst by fitting the
emission spectra in two epochs. The first one (1978) is characterized by large
fluctuations in the light curve and the second one (1993) by the slow fading
trend. In the frame of a colliding wind model two shocks are present: the
reverse shock propagates in the direction of the white dwarf and the other one
expands towards or beyond the giant. The results of our modeling show that in
1993 the expanding shock has overcome the system and is propagating in the
nearby ISM. The large fluctuations observed in the 1978 light curve result from
line intensity rather than from continuum variation. These variations are
explained by fragmentation of matter at the time of head-on collision of the
winds from the two stars. A high velocity (500 km/s) wind component is revealed
from the fit of the SED of the continuum in the X-ray range in 1978, but is
quite unobservable in the line profiles. The geometrical thickness of the
emitting clumps is the critical parameter which can explain the short time
scale variabilities of the spectrum and the trend of slow line intensity
decrease.Comment: 26 pages, LaTeX (including 5 Tables) + 6 PostScript figures. To
appear in "The Astrophysical Journal
Constraining the fundamental parameters of the O-type binary CPD-41degr7733
Using a set of high-resolution spectra, we studied the physical and orbital
properties of the O-type binary CPD-41 7733, located in the core of \ngc. We
report the unambiguous detection of the secondary spectral signature and we
derive the first SB2 orbital solution of the system. The period is 5.6815 +/-
0.0015 d and the orbit has no significant eccentricity. CPD-41 7733 probably
consists of stars of spectral types O8.5 and B3. As for other objects in the
cluster, we observe discrepant luminosity classifications while using
spectroscopic or brightness criteria. Still, the present analysis suggests that
both components display physical parameters close to those of typical O8.5 and
B3 dwarfs. We also analyze the X-ray light curves and spectra obtained during
six 30 ks XMM-Newton pointings spread over the 5.7 d period. We find no
significant variability between the different pointings, nor within the
individual observations. The CPD-41 7733 X-ray spectrum is well reproduced by a
three-temperature thermal mekal model with temperatures of 0.3, 0.8 and 2.4
keV. No X-ray overluminosity, resulting e.g. from a possible wind interaction,
is observed. The emission of CPD-41 7733 is thus very representative of typical
O-type star X-ray emission.Comment: Accepted by ApJ, 15 pages, 9 figure
- …
