KfK 4428 Mai 1988

Copper Resorption in Isolated Rat Hepatocytes

D. Heck, A. Ochs, H. Thom, H. P. Buscher Institut für Kernphysik

Kernforschungszentrum Karlsruhe

KERNFORSCHUNGSZENTRUM KARLSRUHE Institut für Kernphysik

K£K 4428

COPPER RESORPTION IN ISOLATED RAT HEPATOCYTES

D. Heck, A. Ochs¹, H. Thom², H. P. Buscher¹

Kernforschungszentrum Karlsruhe GmbH, Karlsruhe

- ¹ Medizinische Universitätsklinik II, D7800 Freiburg
- ² Institut für organische Chemie und Biochemie der Universität, D7800 Freiburg

Als Manuskript vervielfältigt Für diesen Bericht behalten wir uns alle Rechte vor

Kernforschungszentrum Karlsruhe GmbH Postfach 3640, 7500 Karlsruhe 1

ISSN 0303-4003

COPPER RESORPTION IN ISOLATED RAT HEPATOCYTES

Abstract

Copper plays an important role both in physiology and pathology. In ionic form Cu^{++} is believed to be toxic. Our aim is to investigate the Cu-uptake by isolated rat hepatocytes in an invitro experiment. Hepatocytes are cultured on foils to form cellular monolayers, which are exposed to $CuSO_4$ solution. The trace elements P, S, Cl, K, Ca, Fe, Cu, Zn and Br are determined by PIXE, sweeping the proton microbeam in two dimensions across selected regions of the cell cultures. The concentration averages over positions covering the interior of hepatocytes or the intercellular gaps are formed and the behaviour of the various trace elements is studied as a function of the copper solution exposure time. In most cases cell nuclei are identified and evaluated separately.

KUPFER-AUFNAHME IN ISOLIERTEN HEPATOZYTEN VON RATTEN Zusammenfassung

Kupfer spielt eine wichtige Rolle in der Physiologie und der Pathologie. In ionischer Form wird Cu⁺⁺ für toxisch gehalten. Unser Ziel ist es, die Cu-Aufnahme in isolierten Rattenhepatozyten in einem Laborexperiment zu untersuchen. Dazu werden Leberzellen auf Folien einlagigen Schicht gezüchtet und in einer einer Kupfersulfat-Lösung ausgesetzt. Die Spurenelemente P, S, Cl, K, Ca, Fe, Cu, Zn und Br werden mit Protonen-induzierter Röntgenstrahlung (PIXE) bestimmt, wobei anregende Protonen-Mikrostrahl der zeilenförmig über ausgewählte Bereiche der Zellkulturen bewegt wird. Die Konzentrationen werden alle über Messpositionen die gemittelt, die das Innere der Leberzellen oder Zellzwischenräume überdecken. Untersucht wird das Verhalten der verschiedenen Spurenelemente in Abhängigkeit der Zeit, während der die Probe der Kupfersulfat-Lösung ausgesetzt wird. In den meisten Fällen können die Zellkerne identifiziert und gesondert ausgewertet werden.

1. Introduction

Copper plays a still unclear part in liver cirrhoses. In primary biliary cirrhosis a high content of copper is observed in hepatocytes which line fibrosed portal tracts [1,2,3]. Similar findings exist for cirrhoses with other ethiologies (alcohol toxic, hemochromatosis) [3,4], which also show copper accumulations in the region of active inflammation adjacent to the fibrotically degenerated portal area. In Morbus Wilson the copper concentration in the liver is elevated, but in contrast with the former diseases, the copper is homogeneously distributed in the latter case [5]. In order to enlighten the situation we tried to simulate the influence of copper on hepatocytes by an in-vitro experiment: Hepatocytes are cultured as a mono-layer on thin foils and exposed to CuSO, solution. By the metabolic function of the hepatocytes the copper should be taken up into the cells and excreted again. This might be observed by the analysis method of micro-PIXE (proton induced X-ray emission), which is sensitive enough to detect copper concentrations in the $\mu g/g$ range with a spatial resolution smaller than the 15 µm size of the hepatocytes.

In a completely different approach [6,7,8] similar studies on the resorption of Cu from the plasma have been performed using the radioactive tracer ⁶⁴Cu. They revealed a saturation kinetics and a temperature dependency for the Cu-uptake process. These observations are explained with a facilitated transport by a special carrier protein, which also transports Zn, in combination with diffusional uptake.

- 1 -

2. Sample Preparation

After anesthesia with pentobarbital (60 mg/kg body weight), hepatocytes are isolated from the livers of male Wistar rats with 300 g weight according to a collagenase method of Berry and Friend [9]. Formvar[®] foils of 30 μ g/cm² thickness are stretched over the 5 mm diameter holes of the aluminium support frames and coated with collagen to enable the hepatocytes to attach. The isolated hepatocytes are suspended in a modified Leibovitz L15 medium containing 12.5 mmol/1 HEPES, 12.5 mmol/1 NaHCO₂, 8.3 mmol/1 D(+)glucose, 5 mmol/l L(+)lactate, 1%(v/v) antibiotic/antimycotic solution, and 10%(v/v) fetal bovine serum. The hepatocytes grow as a monolayer on the Formvar $^{\mbox{\scriptsize B}}$ foil with a density of 900 cells/mm 2 in an humidified incubator under standard conditions (atmosphere 95% air and 5% CO, at 37° C). For the first 6 h of cultivation 1 $\mu mo1/1$ dexamethason and 25 μ mol/l insulin are added. After 6 h the medium is changed, containing now additionally (1 µmol/l each) testosterone, 3,3',5-triiodo-L-thyronine, (-)-epinephrine, epidermal growth factor, glucagon, and β -estradiol, but no insulin. Shortly before the treatment with copper solution, the viability of the hepatocytes is tested by staining with trypan blue (0.34 mmol/1, 2 min in L-15), which marks unviable hepatocytes.

To study the effects of copper uptake, the cell cultures are incubated with a solution of 30 μ mol/1 CuSO₄ and 30 μ mol/1 Lhistidine in a buffered L-15 medium (pH 7.4 at 37° C) free from hormones under continuous stirring for time periods ranging from < 1 sec to 30 min. Immediately after removing the cells from the solution, the remaining medium is sucked off and the hepatocytes are washed twice with Cu-free medium at 4° C to prevent a further Cuuptake. After drying of the samples, groups of 5 - 6 vital hepatocytes within a 70 x 60 μ m² area are selected for irradiation with the proton microbeam. As the cells are completely carbonized by the irradiation, a microphoto using Nomarski interference contrast is taken before the irradiation to allow a correlation with the collected data. One sample is prepared in the same manner, but without CuSO, incubation, and serves as a control group.

3. Beam Exposure

Nine cell cultures have been irradiated in the Karlsruhe ion microprobe setup [10] with a 3 MeV proton beam of $\approx 2.5 \ \mu m$ diameter at currents between 150 and 300 pA. The two-dimensional scans with 32 x 32 points cover areas of 70 x 60 μm^2 . The fast scanning speed of 2 mm/sec reduces the local heating of the samples. The meandrous pattern [11] is repeated many thousand times to accumulate sufficient X-ray counts in each pixel. Of special interest are positions where neighbouring cells come into contact and form bile canaliculi, as here metabolic products are excreted from the cells. The proton induced X-rays are registered with a Si(Li) detector (190 eV resolution, 80 mm² active area, 5 mm thickness, 22 mm distance from target). Fig. 1 gives the X-ray spectrum summed over all scanned points of the sample exposed for 20 min to the CuSO₄ solution.

The matrix thickness distribution is derived [12] from the protons which are elastically backscattered from C, N, and O and recorded in an annular silicon surface barrier detector (100 mm² active area, 100 μ m depletion depth, 47 mm distance from target) mounted in the backward direction. The summed backscattering

- 3 -

spectrum of the 20 min sample is presented in fig. 2. For an absolute concentration calibration we use a 577 μ g/cm² thick plastic foil (pure (CH₂)_n) on which a 57.3 μ g/cm² Ni-layer is evaporated.

4. Data Reduction

Maps of the trace elements P, S, Cl, K, Ca, Fe, Cu, Zn, and Br are produced by integration over the K_{χ} peaks of the trace element in question and subtracting background by a suitable choice of background gates below and above the K peak energy. This relatively simple procedure is performed for each of the 32 x 32 pixels instead of the more precise peak fitting which would cost considerably more in computer time. For each pixel the organic matrix mass is determined from the local proton backscattering count rate falling into the gate indicated in fig. 2. To get the local concentration we divide the X-ray intensity by the matrix mass and normalize it [12]. With the average element composition of liver [13] the thickness dependent matrix correction is taken into account [12,14] for each position. Fig. 3 shows a set of trace element and matrix thickness maps of a sample exposed for 2 min to the CuSO, solution, together with a microphoto taken with Nomarski interference contrast before irradiation.

Regions of arbitrary shape covering irradiated positions with the same histological structure (hepatocytes, bile canaliculi) are defined with the aid of the microphoto. For the sample exposed for 2 min to the CuSO₄ solution, these regions are indicated in fig. 4 by different letters. Within each region the trace element concentrations are averaged. The scattering of the individual

- 4 -

values around the average value reveals the standard deviation. In most cases cell nuclei are identified and evaluated separately. From the set of samples with different CuSO₄ exposure periods the time behaviour of various trace elements is derived.

5. Results

The concentration values (in $\mu g/g$ dry matter) of the measurable trace elements in all 9 samples under investigation are collected in the tables 1 to 4. Some of the results are already published elsewhere [15,16]. The control group and the sample with exposure time < 1 sec show normal trace element concentrations [17,18]. Fig. 5 gives the time dependent Cu-concentration in the hepatocytes and in the bile canaliculi. Obviously the Cu-uptake is not yet finished after 30 min. The cell nuclei show the same behaviour, which is given in fig. 6. In contrast, the Cu-concentration in the bile canaliculi declines after 20 min. Similar findings for the Cu-uptake are observed by a completely different method using the radioactive tracer ⁶⁴Cu [19].

During the incubation of the samples, the pH value tends to increase. To keep it at 7.4, varying amounts of HCl are added during the $CuSO_4$ exposure, which explain the extremely high and strongly fluctuating chlorine concentrations. The low energy tail of the Cl K_{α} line in the X-ray spectrum adds to the sulphur peak. Unfortunately the background subtraction technique does not completely compensate this contribution of the tail at excessive Cl-concentrations. Therefore the observed correlation of sulphur with chlorine is a data evaluation artefact. Perhaps the HClsolution is contaminated with potassium, as the K-concentrations go

- 5 -

up and down in parallel with the Cl-levels. Unviable cells in the scanned region exhibit Ca-levels which are significantly increased (up to $\simeq 3000 \ \mu g/g$) compared with those of viable hepatocytes ($\simeq 1500 \ \mu g/g$). Fig. 7 displays the Zn concentration levels, which exhibit no significant time behaviour. Similarly the concentration levels of P, Fe and Br remain unchanged and do not seem to be involved in the copper transport mechanism.

Acknowledgement

The continuous effort of the Van de Graaff accelerator operational staff to produce a high quality beam is appreciated.

1.46.1

 $(1,\ldots,n) \in \mathbb{R}$

- 6 -

References

- [1] F. Watt, G. W. Grime, J. Takacs, D. J. T. Vaux, Nucl. Instr. and Meth. B3 (1984) 599.
- [2] D. J. T. Vaux, F. Watt, G. W. Grime, J. Takacs, J. Clin. Pathol. <u>38</u> (1985) 653.
- [3] D. Heck, A. Ochs, A. Klempnow, K. P. Maier, C. Kratt, Trace
 Element Analytical Chemistry in Medicine and Biology, Vol. 4, eds.
 P. Brätter, P. Schramel (W. de Gruyter, Berlin, 1987) p. 367.
- [4] D. Heck, A. Ochs, A. Klempnow, K. P. Maier, C. Kratt, Nucl. Instr. and Meth. B22 (1987) 196.
- [5] A. Ochs, D. Heck, B. Rogaczewski, K. P. Maier, H. E. Schäfer, W. Gerok, Gastroenterology <u>92</u> (1987) A1761.
- [6] H. M. Darwish, R. C. Schmitt, J. C. Cheney, M. J. Ettinger, Am. J. Physiol. <u>246</u> (1984) G48.
- [7] H. M. Darwish, J. C. Cheney, R. C. Schmitt, M. J. Ettinger, Am. J. Physiol. <u>246</u> (1984) G72.
- [8] H. M. Darwish, R. C. Schmitt, M. J. Ettinger, Federation Proceedings 45 (1986) 2800.
- [9] M. N. Berry, D. S. Friend, J. Cell Biol. 43 (1969) 506.
- [10] D. Heck, Atomkernenergie-Kerntechnik 46 (1985) 187.
- [11] D. Heck, Report KFK-2734 (1978).
- [12] D. Heck, E. Rokita, Nucl. Instr. and Meth. B3 (1984) 259.
- [13] H. J. M. Bowen, Environmental Chemistry of the Elements (Academic Press, London, 1979) p. 103.

[14] D. Heck, E. Rokita, Report KFK-3909 (1985).

- [15] D. Heck, A. Ochs, H. P. Buscher, H. Thom, Nucl. Instr. and Meth. <u>B30</u> (1988) 420.
- [16] A. Ochs, D. Heck, H. Thom, H. P. Buscher, W. Gerok, Z. Gastroenterologie <u>26</u> (1988) 55.
- [17] H. J. M. Bowen, Trace Elements in Biochemistry (Academic Press, London, 1966) p. 76.
- [18] A. Ochs, D. Heck, C. Kratt, G. Schneider, K. P. Maier, Verhandl. Deutsch. Gesellsch. innere Medizin <u>90</u> (1984) 1531.
- [19] R. C. Schmitt, H. M. Darwish, J. C. Cheney, M. J. Ettinger, Am. J. Physiol. <u>244</u> (1983) G183.

Fig. 1. PIXE spectrum of the 20 min sample summed over all scanned points.

Fig. 2. Backscattering spectrum of the 20 min sample summed over all scanned points.

Fig. 3. Trace element and matrix thickness distributions in the 70 x $60 \ \mu m^2$ scanned area of the 2 min sample. Concentration values are normalized relative to the carbon hydride matrix mass.

Fig. 4. Distribution of positions with the same histological structure as used for the averaging of the concentration values on the sample which is exposed for 2 min to the $CuSO_4$ solution. H = hepatocytes, S = bile canaliculi, P = cell nuclei.

Fig. 5. Time dependent concentrations of copper in isolated rat hepatocytes and in the bile canaliculi.

Fig. 6. Time dependent concentrations of copper within the nuclei of isolated rat hepatocytes.

Fig. 7. Time dependent concentrations of zinc in isolated rat hepatocytes and in the bile canaliculi.

<u> </u>					
element	control	e O min	xposu 1 min 1)	re tim 2 min	e 3.5 min
P	16086	10632	17458	22076	15629
	±888	±2117	±1188	±3349	±874
S	16843	21484	19419	42414	13246
	±727	±1692	±1114	±4752	±645
C1	70830	91174	67648	210179	27032
	±7064	±25902	±4917	±75416	±2074
K	11831	10460	10334	19061	7501
	±1395	±802	±567	±1743	±449
Ca	621 ±135			3490 ±1319	
Fe	376	399	488	832	435
	±145	±170	±161	±268	±172
Cu	27.6	48.1	66.4	63.1	66.9
	±33.3	±34.2	±30.7	±54.0	±33.5
Zn	157	147	175	287	149
	±69.6	±61.7	±52.6	±116	±53.6
Br	11.7	18.3	11.2	55.1	10.4
	±41.8	±43.8	±30.7	±68.5	±32.5
thick- ness [µg/cm ²]	386 ±75.0	321 ±97.6	488 ±102	218 ±55.7	278 ±62.0

Table 1. Trace element concentrations relative to carbon hydride in the liver cells [in $\mu g/g$].

¹) Concentration values of this sample include the cell nuclei.

<u></u>	exposure time					
	5 min	10 min	20 min	30 min		
element						
	17666	1/929	13607	14544		
L	±1287	±1105	±3097	±2470		
ļ						
S	34510	25370	11689	14668		
	±5519	±2554	±1155	±2459		
C1	215814	131799	22086	45381		
	±62521	±22611	±1412	±6842		
K	15218	8820	10245			
	±2539	190 4	±/49	1 2040		
Ca	737	564	1702	1633		
	±635	±198	±301	±1098		
`T	051	252	50/	- E 2 7		
гe	251 +162	333 +151	284 +190	557 +253		
	±102	-171	2170			
Cu	171	209	274	389		
	±88.6	±82.0	±71.3	±99.2		
7n	130	124	145	139		
211	± 85.2	± 62.4	±63.3	±52.0		
			Í	İ		
Br	35.5	26.9	8,3	8.0		
	±89.1	±58.5	±28.2	±25.6		
thick-	270	345	358	406		
ness	±76.5	±62.5	±143	±184		
$[\mu g/cm^2]$	1					

Table 1,(cont.) Trace element concentrations relative to carbon hydride in the liver cells [in $\mu g/g$].

1		e	xposu	re tim	e
lelement	control	0 min	1 min	2 min	3.5 min
			, 	•	,
Р	15383	6505	14065	11064	13543
	±1007	±3148	±2112	±9063	±1992
S	17969	21495	17076	52250	13781
	±1024	±2070	±2160	±6223	±1552
C1	81311	210983	60852	562765	30639
	`±9743	±80104	±9105	±259598	±9407
К	17474	9895	9544	21522	7678
	±2390	±1024	±1086	±2012	±551
Ca	872 ±202			2915 ±1150	
Fe	396	257	505	707	756
	±152	±145	±170	±327	±488
Cu	27.1	68.6	66.2	135	105
	±37.5	±43.5	±68.5	±132	±75.3
Zn	153	120	152.	204	174
	±76.2	±67.8	±88.3	±201	±108
Br	13.0	23.4	8.5	72.4	0.45
	±53.8	±46.9	±66.0	±94.9	±70.1
thick- ness [µg/cm ²]	288 ±78.5	243 ±64.9	147 ±75.2	171 ±53.8	156 ±89.7

Table 2. Trace element concentrations relative to carbon hydride in the intercellular gaps [in $\mu g/g$].

element	e	xposur	e tim	e
	5 min	10 min	20 min	30 min
Р	19909	14885	14630	9637
	±1933	±793	±2799	±1538
S	49685	26656	11197	9680
	±9258	±2514	±824	±1172
C1	456148	150695	22966	34552
	±180621	±25712	±1513	±2708
K	20688	9221	10758	6492
	±9006	±840	±666	±492
Са	59.3	566	1775	1051
	±745	±171	±175	±110
Fe	133	323	671	452
	±223	±143	±183	±175
Cu	143	181	284	220
	±125	±82.0	±72.0	±88.9
Zn	110	116	152	109
	±124	±70.0	±60.3	±61.1
Br	27.6	30.1	5.5	6.9
	±134	±93.7	±28.4	±57.9
thick- ness [µg/cm ²]	164 ±46.4	232 ±51.8	268 ±88.0	134 ±21.6

Table 2.(cont.) Trace element concentrations relative to carbon hydride in the intercellular gaps [in µg/g].

element	control	e O min	xposu 1 min 1)	re tim 2 min 	e 3.5 min	
P	17330 ±877	13248 ±1189		22334 ±4168	17233 ±1063	
S	17073 ±582	21921 ±1578		43869 ±5673	13349 ±400	
C1	71508 ±9219	104608 ±17083		271310 ±95178	27602 ±1886	
К	12349 ±1408	11091 ±569		19236 ±1591	7672 ±452	
Ca	635 ±107			3575 ±856		
Fe	304 ±172	176 ±108		507 ±372	351 ±169	
Cu	29.9 ±28.3	55.2 ±34.3		71.5 ±72.8	77.1 ±40.8	
Zn	249 ±70.0	274 ±70.4		416 ±143	233 ±70.7	
Br	0.4 ±33.4	20.6 ±30.3		48.3 ±71.8	15.2 ±33.7	
thick- ness [µg/cm²]	386 ±65.9	365 ±48.4	- -	228 ±42.9	285 ±50.0	
) Cell nuclei are not resolved in this sample.						

Table 3. Trace element concentrations relative to carbon hydride in the cell nuclei [in $\mu g/g$].

- 20 -

	exposure time					
	5 min	10 min	20 min	30 min		
element						
			16022	16479		
Р		1014/	10022	10473		
	±11/0	±/31	1973	21190		
S	32525	25736	12200	16601		
Ð	+4675	+2137	+350	+1095		
	±+075	-4157	2550	21075		
C1	199181	129665	24093	50562		
	±51296	±16765	±1182	±2088		
K	14634	9197	11105	9015		
	±1131	±901	±556	±519		
Ca	512	661	1712	1342		
	±311	±247	±103	±297		
T.	100	202	1.26	/ 05		
гe	109	302	420	405		
!		0	7122	1210		
Cu	 247	245	388	541		
ou	± 87.0	±98.7	±72.8	±91.8		
		_>0.7				
Zn	243	215	211	202		
	±84.4	±52.3	±68.4	±29.6		
Br	24.3	37.5	7.2	10,8		
	±67.6	±58.2	±24.3	±19.7		
thick-	348	363	323	227 100		
11 mess	1 I I I I I I I I I I I I I I I I I I I	±03.9	T00.9	+120 		
[hR/cm]	 			 		

Table 3.(cont.) Trace element concentrations relative to carbon hydride in the cell nuclei [in $\mu g/g$].

	exposure time					
	control	0 min	1 min	2 min	3.5 min	
element	· · · · · · · · · · · ·	[1)		
P	14836	l 8952	16272		16363	
	+2163	+2430	+2632		+980	
S	18242	26212	18550			
	+2142	+2/98	+1070		+660	
C1	81869	133139	57510		27545	
	+11951	+34870	+2609		+7742	
i						
K K	15741	11801	9555		7235	
	+4278	+1083	+349		+302	
	1200	1060	0600		1/10	
	1502	1902 ±1502	4030 ±1396		1412	
	1405		11350			
Fe `	330	119	623		494	
1	+180	+116	+211		+113	
Cu Cu	44.4	107	72.3		48.8	
1	+54.6	+54.9	+46.9		+32.8	
Zn	132	61 9	145	ļ 	99.0	
	+85.7	+47.3	+59.3		+37.0	
Br	7.0	16.0	8.1		8.7	
	+68.8	+41.7	+49.5		+27.8	
thick-	294	287	453			
ness	+188	+77.2	+223		± 46.7	
$[\mu g/cm^2]$	-100					

Table 4. Trace element concentrations relative to carbon hydride in unviable hepatocytes [in $\mu g/g$].

¹) Only viable hepatocytes in the scanned area.

	e	X D O S 11 1	ce tim	е
	5 min	10 min	20 min	- 30 min
element	1)	20 1111	20	
ΡI		14803	10978	17585
-		+986	+3831	+4362
		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10001	.4004
s i		28202	11214	12187
		+2563	+2105	+2198
		12303	12105	12190
C1		160909	21095	42555
		100000	±2823	±/109
1		124745	12025	14105
K I		9546	10020	7715
		19340	10020	1630 1112
		+032	+1300	T039
Ca I		117/	2053	0002
		11/4 1270	±1301	13873
1		+372	+1501	
Fo I		281	337	162
16 1		201 ±144	JJ7 170	102
1		T144	110	
Cu		170	24.2	220
04		175	242 183 6	
1		T/0.0	+03.0	T94.2
7n		106	87 6	46 5
		100	07.0 ±66.6	40.5 ±47.9
		T09.9	+00.0	
Br I		30.0	11 7	1 11 5
DI I		JU.U	±1.7	
		T04./	T47.4	
thick- 1		241	208	229
nace		+55 8	+107	+136
$\left[\frac{1}{10} \left(cm^2 \right) \right]$		0.0.1	7101	

Table 4.(cont.) Trace element concentrations relative to carbon hydride in unviable hepatocytes [in $\mu g/g$].

¹) Only viable hepatocytes in the scanned area.