118 research outputs found
Electron-hole pairs during the adsorption dynamics of O2 on Pd(100) - Exciting or not?
During the exothermic adsorption of molecules at solid surfaces dissipation
of the released energy occurs via the excitation of electronic and phononic
degrees of freedom. For metallic substrates the role of the nonadiabatic
electronic excitation channel has been controversially discussed, as the
absence of a band gap could favour an easy coupling to a manifold of
electronhole pairs of arbitrarily low energies. We analyse this situation for
the highly exothermic showcase system of molecular oxygen dissociating at
Pd(100), using time-dependent perturbation theory applied to first-principles
electronic-structure calculations. For a range of different trajectories of
impinging O2 molecules we compute largely varying electron-hole pair spectra,
which underlines the necessity to consider the high-dimensionality of the
surface dynamical process when assessing the total energy loss into this
dissipation channel. Despite the high Pd density of states at the Fermi level,
the concomitant non-adiabatic energy losses nevertheless never exceed about 5%
of the available chemisorption energy. While this supports an electronically
adiabatic description of the predominant heat dissipation into the phononic
system, we critically discuss the non-adiabatic excitations in the context of
the O2 spin transition during the dissociation process.Comment: 20 pages including 7 figures; related publications can be found at
http://www.fhi-berlin.mpg.de/th/th.html [added two references, changed
V_{fsa} to V_{6D}, modified a few formulations in interpretation of spin
asymmetry of eh-spectra, added missing equals sign in Eg.(2.10)
Residual platelet ADP reactivity after clopidogrel treatment is dependent on activation of both the unblocked P2Y1 and the P2Y12 receptor and is correlated with protein expression of P2Y12
Two ADP receptors have been identified on human platelets: P2Y1 and P2Y12. The P2Y12 receptor blocker clopidogrel is widely used to reduce the risks in acute coronary syndromes, but, currently, there is no P2Y1 blocker in clinical use. Evidence for variable responses to clopidogrel has been described in several reports. The mechanistic explanation for this phenomenon is not fully understood. The aim of this study was to examine mechanisms responsible for variability of 2MeS-ADP, a stable ADP analogue, induced platelet reactivity in clopidogrel-treated patients. Platelet reactivity was assessed by flow cytometry measurements of P-selectin (CD62P) and activated GpIIb/IIIa complex (PAC-1). Residual 2MeS-ADP activation via the P2Y12 and P2Y1 receptors was determined by co-incubation with the selective antagonists AR-C69931 and MRS2179 in vitro. P2Y1 and P2Y12 receptor expression on both RNA and protein level were determined, as well as the P2Y12 H1 or H2 haplotypes. Our data suggest that the residual platelet activation of 2MeS-ADP after clopidogrel treatment is partly due to an inadequate antagonistic effect of clopidogrel on the P2Y12 receptor and partly due to activation of the P2Y1 receptor, which is unaffected by clopidogrel. Moreover, a correlation between increased P2Y12 protein expression on platelets and decreased response to clopidogrel was noticed, r2=0.43 (P<0.05). No correlation was found between P2Y12 mRNA levels and clopidogrel resistance, indicating post-transcriptional mechanisms. To achieve additional ADP inhibition in platelets, antagonists directed at the P2Y1 receptor could be more promising than the development of more potent P2Y12 receptor antagonists
Protection of flunarizine on cerebral mitochondria injury induced by cortical spreading depression under hypoxic conditions
A rat cortical spreading depression (CSD) model was established to explore whether cerebral mitochondria injury was induced by CSD under both normoxic and hypoxic conditions and whether flunarizine had a protective effect on cerebral mitochondria. SD rats, which were divided into seven groups, received treatment as follows: no intervention (control Group I); 1 M NaCl injections (Group II); 1 M KCl injections (Group III); intraperitoneal flunarizine (3 mg/kg) 30 min before KCl injections (Group IV); 14% O2 inhalation before NaCl injections (Group V); 14% O2 inhalation followed by KCl injections (Group VI); 14% O2 inhalation and intraperitoneal flunarizine followed by KCl injections (Group VII). Following treatment, brains were removed for the analysis of mitochondria transmembrane potential (MMP) and oxidative respiratory function after recording the number, amplitude and duration of CSD. The duration of CSD was significantly longer in Group VI than that in Group III. The number and duration of CSD in Group VII was significantly lower than that in Group VI. MMP in Group VI was significantly lower than that in Group III, and MMP in Group VII was significantly higher than that in Group VI. State 4 respiration in Group VI was significantly higher than that in Group III, and state 3 respiration in Group VII was significantly higher than that in Group VI. Respiration control of rate in Group VII was also significantly higher than that in Group VI. Thus, we concluded that aggravated cerebral mitochondria injury might be attributed to CSD under hypoxic conditions. Flunarizine can alleviate such cerebral mitochondria injury under both normoxic and hypoxic conditions
Direct determination of polycyclic aromatic hydrocarbons in solid matrices using laser desorption/laser photoionization ion trap mass spectrometry
Gas-phase fragmentation of long-lived cysteine radical cations formed via no loss from protonated S-nitrosocysteine
Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters
Arsenic is an extremely toxic metalloid causing serious health problems. In Southeast Asia, aquifers providing drinking and agricultural water for tens of millions of people are contaminated with arsenic. To reduce nutritional arsenic intake through the consumption of contaminated plants, identification of the mechanisms for arsenic accumulation and detoxification in plants is a prerequisite. Phytochelatins (PCs) are glutathione-derived peptides that chelate heavy metals and metalloids such as arsenic, thereby functioning as the first step in their detoxification. Plant vacuoles act as final detoxification stores for heavy metals and arsenic. The essential PC-metal(loid) transporters that sequester toxic metal(loid)s in plant vacuoles have long been sought but remain unidentified in plants. Here we show that in the absence of two ABCC-type transporters, AtABCC1 and AtABCC2, Arabidopsis thaliana is extremely sensitive to arsenic and arsenic-based herbicides. Heterologous expression of these ABCC transporters in phytochelatin-producing Saccharomyces cerevisiae enhanced arsenic tolerance and accumulation. Furthermore, membrane vesicles isolated from these yeasts exhibited a pronounced arsenite [As(III)]-PC(2) transport activity. Vacuoles isolated from atabcc1 atabcc2 double knockout plants exhibited a very low residual As(III)-PC(2) transport activity, and interestingly, less PC was produced in mutant plants when exposed to arsenic. Overexpression of AtPCS1 and AtABCC1 resulted in plants exhibiting increased arsenic tolerance. Our findings demonstrate that AtABCC1 and AtABCC2 are the long-sought and major vacuolar PC transporters. Modulation of vacuolar PC transporters in other plants may allow engineering of plants suited either for phytoremediation or reduced accumulation of arsenic in edible organs
Characterization of a transport activity for long-chain peptides in barley mesophyll vacuoles
The plant vacuole is the largest compartment in a fully expanded plant cell. While only very limited metabolic activity can be observed within the vacuole, the majority of the hydrolytic activities, including proteolytic activities reside in this organelle. Since it is assumed that protein degradation by the proteasome results in the production of peptides with a size of 3-30 amino acids, we were interested to show whether the tonoplast exhibits a transport activity, which could deliver these peptides into the vacuole for final degradation. It is shown here that isolated barley mesophyll vacuoles take up peptides of 9-27 amino acids in a strictly ATP-dependent manner. Uptake is inhibited by vanadate, but not by NH(+)(4), while GTP could partially substitute for ATP. The apparent affinity for the 9 amino acid peptide was 15 μM, suggesting that peptides are efficiently transferred to the vacuole in vivo. Inhibition experiments showed that peptides with a chain length below 10 amino acids did not compete as efficiently as longer peptides for the uptake of the 9 amino acid peptide. Our results suggest that vacuoles contain at least one peptide transporter that belongs to the ABC-type transporters, which efficiently exports long-chain peptides from the cytosol into the vacuole for final degradation
- …
