771 research outputs found

    Limitations of decomposition-based imaging of longitudinal absorber configurations

    Get PDF
    We examine theoretically and experimentally an imaging scheme that uses the transverse intensity profile of the scattered light to reconstruct the locations of absorbers embedded in a turbid medium. This method is based on an a priori knowledge of the scattered light patterns associated with a single absorber that is located at various positions inside the medium. We discuss the range of validity of this method, and its sensitivity with regard to noise, and propose an algorithm to improve its accuracy

    Decomposition-based recovery of absorbers in turbid media

    Get PDF
    We suggest that the concept of the point-spread function traditionally used to predict the blurred image pattern of various light sources embedded inside turbid media can be generalized under certain conditions to predict also the presence and location of spatially localized absorbing inhomogeneities based on shadow point-spread functions associated with each localized absorber in the medium. The combined image obtained from several absorbers can then be decomposed approximately into the arithmetic sums of these individual shadow point-spread functions with suitable weights that can be obtained from multiple-regression analysis. This technique permits the reconstruction of the location of absorbers

    Unitary and nonunitary approaches in quantum field theory

    Get PDF
    We use a simplified essential state model to compare two quantum field theoretical approaches to study the creation of electron-positron pairs from the vacuum. In the unitary approach the system is characterized by a state with different numbers of particles that is described by occupation numbers and evolves with conserved norm. The nonunitary approach can predict the evolution of wave functions and density operators with a fixed number of particles but time-dependent norms. As an example to illustrate the differences between both approaches, we examine the degree of entanglement for the Klein paradox, which describes the creation of an electron-positron pair from vacuum in the presence of an initial electron. We demonstrate how the Pauli blocking by the initial electron comes at the expense of a gain in entanglement of this electron with the created electron as well as with the created positron

    The sedimentary legacy of a palaeo-ice stream on the shelf of the southern Bellingshausen Sea: Clues to West Antarctic glacial history during the Late Quaternary

    Get PDF
    A major trough ("Belgica Trough") eroded by a palaeo-ice stream crosses the continental shelf of the southern Bellingshausen Sea (West Antarctica) and is associated with a trough mouth fan ("Belgica TMF") on the adjacent continental slope. Previous marine geophysical and geological studies investigated the bathymetry and geomorphology of Belgica Trough and Belgica TMF, erosional and depositional processes associated with bedform formation, and the temporal and spatial changes in clay mineral provenance of subglacial and glaciomarine sediments. Here, we present multi-proxy data from sediment cores recovered from the shelf and uppermost slope in the southern Bellingshausen Sea and reconstruct the ice-sheet history since the last glacial maximum (LGM) in this poorly studied area of West Antarctica. We combined new data (physical properties, sedimentary structures, geochemical and grain-size data) with published data (shear strength, clay mineral assemblages) to refine a previous facies classification for the sediments. The multi-proxy approach allowed us to distinguish four main facies types and to assign them to the following depositional settings: 1) subglacial, 2) proximal grounding-line, 3) distal sub-ice shelf/sub-sea ice, and 4) seasonal open-marine. In the seasonal open-marine fades we found evidence for episodic current-induced winnowing of near-seabed sediments on the middle to outer shelf and at the uppermost slope during the late Holocene. In addition, we obtained data on excess Pb-210 activity at three core sites and 44 AMS C-14 dates from the acid-insoluble fraction of organic matter (AIO) and calcareous (micro-) fossils, respectively, at 12 sites. These chronological data enabled us to reconstruct, for the first time, the timing of the last advance and retreat of the West Antarctic Ice Sheet (WAIS) and the Antarctic Peninsula Ice Sheet (APIS) in the southern Bellingshausen Sea. We used the down-core variability in sediment provenance inferred from clay mineral changes to identify the most reliable AIO C-14 ages for ice-sheet retreat. The palaeo-ice stream advanced through Belgica Trough after similar to 36.0 corrected C-14 ka before present (B.P.). It retreated from the outer shelf at similar to 25.5 ka B.P, the middle shelf at similar to 19.8 ka B.P., the inner shelf in Eltanin Bay at similar to 12.3 ka B.P., and the inner shelf in Ronne Entrance at similar to 6.3 ka B.P. The retreat of the WAIS and APIS occurred slowly and stepwise, and may still be in progress. This dynamical ice-sheet behaviour has to be taken into account for the interpretation of recent and the prediction of future mass-balance changes in the study area. The glacial history of the southern Bellingshausen Sea is unique when compared to other regions in West Antarctica, but some open questions regarding its chronology need to be addressed by future work. (C) 2010 Elsevier Ltd. All rights reserved

    Quantum Correlations in Two-Boson Wavefunctions

    Get PDF
    We present the Schmidt decomposition for arbitrary wavefunctions of two indistinguishable bosons, extending the recent studies of entanglement or quantum correlations for two fermion systems [J. Schliemann et al., Phys. Rev. B {\bf 63}, 085311 (2001) and quant-ph/0012094]. We point out that the von Neumann entropy of the reduced single particle density matrix remains to be a good entanglement measure for two identical particles.Comment: in press at Phys. Rev.

    Studies of group velocity reduction and pulse regeneration with and without the adiabatic approximation

    Get PDF
    We present a detailed semiclassical study on the propagation of a pair of optical fields in resonant media with and without adiabatic approximation. In the case of near and on resonance excitation, we show detailed calculation, both analytically and numerically, on the extremely slowly propagating probe pulse and the subsequent regeneration of a pulse via a coupling laser. Further discussions on the adiabatic approximation provide many subtle understandings of the process including the effect on the band width of the regenerated optical field. Indeed, all features of the optical pulse regeneration and most of the intricate details of the process can be obtained with the present treatment without invoke a full field theoretical method. For very far off resonance excitation, we show that the analytical solution is nearly detuning independent, a surprising result that is vigorously tested and compared to numerical calculations with very good agreement.Comment: 13 pages, 15 figures, submitted to Phys. Rev.

    A mapping approach to synchronization in the "Zajfman trap": stability conditions and the synchronization mechanism

    Get PDF
    We present a two particle model to explain the mechanism that stabilizes a bunch of positively charged ions in an "ion trap resonator" [Pedersen etal, Phys. Rev. Lett. 87 (2001) 055001]. The model decomposes the motion of the two ions into two mappings for the free motion in different parts of the trap and one for a compressing momentum kick. The ions' interaction is modelled by a time delay, which then changes the balance between adjacent momentum kicks. Through these mappings we identify the microscopic process that is responsible for synchronization and give the conditions for that regime.Comment: 12 pages, 9 figures; submitted to Phys Rev

    Theoretical Study of Fast Light with Short sech Pulses in Coherent Gain Media

    Full text link
    We investigate theoretically the phenomenon of so-called fast light in an unconventional regime, using pulses sufficiently short that relaxation effects in a gain medium can be ignored completely. We show that previously recognized gain instabilities, including superfluorescence, can be tolerated in achieving a pulse peak advance of one full peak width.Comment: 7 pages, 8 figures; Replaced with revised version accepted by JOSA
    • …
    corecore