213 research outputs found
The telltale heart: a non-invasive method to determine the energy expenditure of incubating Great Cormorants Phalacrocorax carbo carbo
We studied the energetics of incubating Great Cormorants Phalacrocorax carbo carbo via heart rate and respirometric measurements performed in captive and free-living animals. We applied a modified heart beat frequency (HR) monitor built for use in human athletics as well as respirometry for measurements in four captive-bred cormorants at Neumuenster Zoo, Germany. The obtained data were used to model the relationship between HR and metabolic rate (MR). The resulting correlations were MR (W kg-0.723) = 4.76 + 0.01HR (bpm) during daytime and MR (W kg-0.723) = 2.33 + 0.03HR (bpm) at night. Furthermore, the heart beat frequencies of 5 free-living, incubating cormorants at the Chausey Islands, France, were measured acoustically using artificial eggs while the activities at the nest were observed via video. HR-MR models established in the captive animals were used to determine the activity-dependent energy expenditure in these free-living cormorants. The Median MR was 5.08 W kg-0.723 at night, 6.06 W kg-0.723 while resting and sleeping during daytime, 6.20 W kg-0.723 during preening, gular flutter and unrest and 6.47 W kg-0.723 during nest building. In resting birds we found a nocturnal reduction in the energy expenditure of 16 %. Our method for measurement of heart beat frequency appears promising as a technique for determination of HR with minimal restraint to the anima
The various manifestations of collisionless dissipation in wave propagation
The propagation of an electrostatic wave packet inside a collisionless and
initially Maxwellian plasma is always dissipative because of the irreversible
acceleration of the electrons by the wave. Then, in the linear regime, the wave
packet is Landau damped, so that in the reference frame moving at the group
velocity, the wave amplitude decays exponentially with time. In the nonlinear
regime, once phase mixing has occurred and when the electron motion is nearly
adiabatic, the damping rate is strongly reduced compared to the Landau one, so
that the wave amplitude remains nearly constant along the characteristics. Yet,
we show here that the electrons are still globally accelerated by the wave
packet, and, in one dimension, this leads to a non local amplitude dependence
of the group velocity. As a result, a freely propagating wave packet would
shrink, and, therefore, so would its total energy. In more than one dimension,
not only does the magnitude of the group velocity nonlinearly vary, but also
its direction. In the weakly nonlinear regime, when the collisionless damping
rate is still significant compared to its linear value, this leads to an
effective defocussing effect which we quantify, and which we compare to the
self-focussing induced by wave front bowing.Comment: 23 pages, 6 figure
The relative importance of physiological and behavioral adaptation in diving endotherms: a case study with great cormorants
Extensive morphological and physiological adjustments are assumed to underpin the adaptations of diving birds to
high thermoregulatory costs. However, the role of behavioural adaptations has received little consideration. We have assessed
the relative importance of physiological and behavioural adjustments in aquatic endotherms by studying the case of the poorly
insulated great cormorant (Phalacrocorax carbo) in two contrasting thermal environments: Normandy (water temperature
12°C) and Greenland (water temperature 5°C). Major differences were found in the feeding behaviour of birds breeding in the
two regions. Greenland birds showed a 70% reduction in time spent swimming relative to those in Normandy. Reduction in
Greenland was achieved first by reducing time spent on the surface between dives and secondly by returning to land in between
intensive bouts of diving. Total daily energy intake of cormorants was similar in both areas but prey capture rates in Greenland
were 150% higher than those in Normandy. Our study shows that in a cold foraging environment, poorly insulated great
cormorants significantly increase their foraging efficiency. To do this they rely on ecological adaptive patterns (minimization
of time spent swimming in cold water and increased prey capture rates) far more than physiological adaptations (minimizing
instantaneous costs). This finding supports predictions by Grémillet and Wilson (1999) that great cormorants can cope with
a wide range of abiotic parameters despite their morphological handicaps, provided they can adjust their distribution to exploit
dense prey patches
Theory of Fast Electron Transport for Fast Ignition
Fast Ignition Inertial Confinement Fusion is a variant of inertial fusion in
which DT fuel is first compressed to high density and then ignited by a
relativistic electron beam generated by a fast (< 20 ps) ultra-intense laser
pulse, which is usually brought in to the dense plasma via the inclusion of a
re-entrant cone. The transport of this beam from the cone apex into the dense
fuel is a critical part of this scheme, as it can strongly influence the
overall energetics. Here we review progress in the theory and numerical
simulation of fast electron transport in the context of Fast Ignition.
Important aspects of the basic plasma physics, descriptions of the numerical
methods used, a review of ignition-scale simulations, and a survey of schemes
for controlling the propagation of fast electrons are included. Considerable
progress has taken place in this area, but the development of a robust,
high-gain FI `point design' is still an ongoing challenge.Comment: 78 pages, 27 figures, review article submitted to Nuclear Fusio
Assessing the validity of the accelerometry technique for estimating the energy expenditure of diving double-crested cormorants Phalacrocorax auritus
Over the past few years, acceleration-data loggers have been used to provide calibrated proxies of energy expenditure: The accelerometry technique. Relationships between rate of oxygen consumption and a derivation of acceleration data termed "overall dynamic body acceleration" (ODBA) have now been generated for a range of species, including birds, mammals, and amphibians. In this study, we examine the utility of the accelerometry technique for estimating the energy expended by double-crested cormorants Phalacrocorax auritus to undertake a dive cycle (i.e., a dive and the subsequent pause at the surface before another dive). The results show that ODBA does not calibrate with energy expenditure in diving cormorants, where energy expenditure is calculated from measures of oxygen uptake during surface periods between dives. The possible explanations include reasons why energy expenditure may not relate to ODBA but also reasons why oxygen uptake between dives may not accurately represent energy expenditure during a dive cycle
Consistency of safety and efficacy of new oral anticoagulants across subgroups of patients with atrial fibrillation.
AIMS: The well-known limitations of vitamin K antagonists (VKA) led to development of new oral anticoagulants (NOAC) in non-valvular atrial fibrillation (NVAF). The aim of this meta-analysis was to determine the consistency of treatment effects of NOAC irrespective of age, comorbidities, or prior VKA exposure.
METHODS AND RESULTS: All randomized, controlled phase III trials comparing NOAC to VKA up to October 2012 were eligible provided their results (stroke/systemic embolism (SSE) and major bleeding (MB)) were reported according to age (≤ or >75 years), renal function, CHADS2 score, presence of diabetes mellitus or heart failure, prior VKA use or previous cerebrovascular events. Interactions were considered significant at p <0.05. Three studies (50,578 patients) were included, respectively evaluating apixaban, rivaroxaban, and dabigatran versus warfarin. A trend towards interaction with heart failure (p = 0.08) was observed with respect to SSE reduction, this being greater in patients not presenting heart failure (RR = 0.76 [0.67-0.86]) than in those with heart failure (RR = 0.90 [0.78-1.04]); Significant interaction (p = 0.01) with CHADS2 score was observed, NOAC achieving a greater reduction in bleeding risk in patients with a score of 0-1 (RR 0.67 CI 0.57-0.79) than in those with a score ≥2 (RR 0.85 CI 0.74-0.98). Comparison of MB in patients with (RR 0.97 CI 0.79-1.18) and without (RR 0.76 CI 0.65-0.88) diabetes mellitus showed a similar trend (p = 0.06). No other interactions were found. All subgroups derived benefit from NOA in terms of SSE or MB reduction.
CONCLUSIONS: NOAC appeared to be more effective and safer than VKA in reducing SSE or MB irrespective of patient comorbidities. Thromboembolism risk, evaluated by CHADS2 score and, to a lesser extent, diabetes mellitus modified the treatment effects of NOAC without complete loss of benefit with respect to MB reduction
Index
The interest in relativistic beam-plasma instabilities has been greatly rejuvenated over the past two decades by novel concepts in laboratory and space plasmas. Recent advances in this long-standing field are here reviewed from both theoretical and numerical points of view. The primary focus is on the two-dimensional spectrum of unstable electromagnetic waves growing within relativistic, unmagnetized, and uniform electron beam-plasma systems. Although the goal is to provide a unified picture of all instability classes at play, emphasis is put on the potentially dominant waves propagating obliquely to the beam direction, which have received little attention over the years. First, the basic derivation of the general dielectric function of a kinetic relativistic plasma is recalled. Next, an overview of two-dimensional unstable spectra associated with various beam-plasma distribution functions is given. Both cold-fluid and kinetic linear theory results are reported, the latter being based on waterbag and Maxwell–Jüttner model distributions. The main properties of the competing modes (developing parallel, transverse, and oblique to the beam) are given, and their respective region of dominance in the system parameter space is explained. Later sections address particle-in-cell numerical simulations and the nonlinear evolution of multidimensional beam-plasma systems. The elementary structures generated by the various instability classes are first discussed in the case of reduced-geometry systems. Validation of linear theory is then illustrated in detail for large-scale systems, as is the multistaged character of the nonlinear phase. Finally, a collection of closely related beam-plasma problems involving additional physical effects is presented, and worthwhile directions of future research are outlined.Original Publication: Antoine Bret, Laurent Gremillet and Mark Eric Dieckmann, Multidimensional electron beam-plasma instabilities in the relativistic regime, 2010, Physics of Plasmas, (17), 12, 120501-1-120501-36. http://dx.doi.org/10.1063/1.3514586 Copyright: American Institute of Physics http://www.aip.org/</p
High-energy acceleration phenomena in extreme radiation-plasma interactions
We simulate, using a particle-in-cell code, the chain of acceleration
processes at work during the Compton-based interaction of a dilute electron-ion
plasma with an extreme-intensity, incoherent gamma-ray flux with a photon
density several orders of magnitude above the particle density. The plasma
electrons are initially accelerated in the radiative flux direction through
Compton scattering. In turn, the charge-separation field from the induced
current drives forward the plasma ions to near-relativistic speed and
accelerates backwards the non-scattered electrons to energies easily exceeding
those of the driving photons. The dynamics of those energized electrons is
determined by the interplay of electrostatic acceleration, bulk plasma motion,
inverse Compton scattering and deflections off the mobile magnetic fluctuations
generated by a Weibel-type instability. The latter Fermi-like effect notably
gives rise to a forward-directed suprathermal electron tail. We provide simple
analytical descriptions for most of those phenomena and examine numerically
their sensitivity to the parameters of the problem
- …
