304 research outputs found

    Investigation of a single-photon source based on quantum interference

    Get PDF
    We report on an experimental investigation of a single-photon source based on a quantum interference effect first demonstrated by Koashi, Matsuoka, and Hirano [Phys. Rev. A 53, 3621 (1996)]. For certain types of measurement-based quantum information processing applications this technique may be useful as a high rate, but random, source of single photons.Comment: Submitted to the New J. Phys. Focus Issue on "Measurement-based quantum information processing

    Pulsed squeezed vacuum characterization without homodyning

    Full text link
    Direct photon detection is experimentally implemented to measure the squeezing and purity of a single-mode squeezed vacuum state without an interferometric homodyne detection. Following a recent theoretical proposal [arXiv quant-ph/0311119], the setup only requires a tunable beamsplitter and a single-photon detector to fully characterize the generated Gaussian states. The experimental implementation of this procedure is discussed and compared with other reference methods.Comment: 8 pages, 7 figure

    Coherent excitation of a single atom to a Rydberg state

    Full text link
    We present the coherent excitation of a single Rubidium atom to the Rydberg state (58d3/2) using a two-photon transition. The experimental setup is described in detail, as well as experimental techniques and procedures. The coherence of the excitation is revealed by observing Rabi oscillations between ground and Rydberg states of the atom. We analyze the observed oscillations in detail and compare them to numerical simulations which include imperfections of our experimental system. Strategies for future improvements on the coherent manipulation of a single atom in our settings are given

    Entanglement of two individual atoms using the Rydberg blockade

    Full text link
    We report on our recent progress on the manipulation of single rubidium atoms trapped in optical tweezers and the generation of entanglement between two atoms, each individually trapped in neighboring tweezers. To create an entangled state of two atoms in their ground states, we make use of the Rydberg blockade mechanism. The degree of entanglement is measured using global rotations of the internal states of both atoms. Such internal state rotations on a single atom are demonstrated with a high fidelity.Comment: Proceeding of the 19th International Conference on Laser Spectroscopy ICOLS 2009, 7-13 June 2009, Hokkaido, Japa

    High performance guided-wave asynchronous heralded single photon source

    Get PDF
    We report on a guided wave heralded photon source based on the creation of non-degenerate photon pairs by spontaneous parametric down conversion in a Periodically Poled Lithium Niobate waveguide. Using the signal photon at 1310 nm as a trigger, a gated detection process permits announcing the arrival of single photons at 1550 nm at the output of a single mode optical fiber with a high probability of 0.38. At the same time the multi-photon emission probability is reduced by a factor of 10 compared to poissonian light sources. Relying on guided wave technologies such as integrated optics and fiber optics components, our source offers stability, compactness and efficiency and can serve as a paradigm for guided wave devices applied to quantum communication and computation using existing telecom networks

    Design of metallic nanoparticles gratings for filtering properties in the visible spectrum

    Full text link
    Plasmonic resonances in metallic nanoparticles are exploited to create efficient optical filtering functions. A Finite Element Method is used to model metallic nanoparticles gratings. The accuracy of this method is shown by comparing numerical results with measurements on a two-dimensional grating of gold nanocylinders with elliptic cross section. Then a parametric analysis is performed in order to design efficient filters with polarization dependent properties together with high transparency over the visible range. The behavior of nanoparticle gratings is also modelled using the Maxwell-Garnett homogenization theory and analyzed by comparison with the diffraction by a single nanoparticle. The proposed structures are intended to be included in optical systems which could find innovative applications.Comment: submitted to Applied Optic

    Energy distribution and cooling of a single atom in an optical tweezer

    Full text link
    We investigate experimentally the energy distribution of a single rubidium atom trapped in a strongly focused dipole trap under various cooling regimes. Using two different methods to measure the mean energy of the atom, we show that the energy distribution of the radiatively cooled atom is close to thermal. We then demonstrate how to reduce the energy of the single atom, first by adiabatic cooling, and then by truncating the Boltzmann distribution of the single atom. This provides a non-deterministic way to prepare atoms at low microKelvin temperatures, close to the ground state of the trapping potential.Comment: 9 pages, 6 figures, published in PR

    Multidimensional reconciliation for continuous-variable quantum key distribution

    Get PDF
    We propose a method for extracting an errorless secret key in a continuous-variable quantum key distribution protocol, which is based on Gaussian modulation of coherent states and homodyne detection. The crucial feature is an eight-dimensional reconciliation method, based on the algebraic properties of octonions. Since the protocol does not use any postselection, it can be proven secure against arbitrary collective attacks, by using well-established theorems on the optimality of Gaussian attacks. By using this new coding scheme with an appropriate signal to noise ratio, the distance for secure continuous-variable quantum key distribution can be significantly extended.Comment: 8 pages, 3 figure

    Test of the quantumness of atom-atom correlations in a bosonic gas

    Full text link
    It is shown how the quantumness of atom-atom correlations in a trapped bosonic gas can be made observable. Application of continuous feedback control of the center of mass of the atomic cloud is shown to generate oscillations of the spatial extension of the cloud, whose amplitude can be directly used as a characterization of atom-atom correlations. Feedback parameters can be chosen such that the violation of a Schwarz inequality for atom-atom correlations can be tested at noise levels much higher than the standard quantum limit

    Continuous variable quantum cryptography using coherent states

    Get PDF
    We propose several methods for quantum key distribution (QKD) based upon the generation and transmission of random distributions of coherent or squeezed states, and we show that they are are secure against individual eavesdropping attacks. These protocols require that the transmission of the optical line between Alice and Bob is larger than 50 %, but they do not rely on "non-classical" features such as squeezing. Their security is a direct consequence of the no-cloning theorem, that limits the signal to noise ratio of possible quantum measurements on the transmission line. Our approach can also be used for evaluating various QKD protocols using light with gaussian statistics.Comment: 5 pages, 1 figure. In v2 minor rewriting for clarity, references adde
    corecore