487 research outputs found

    Research Notes: Potential of exotic soybeans in the sub-montane region of Himachal Pradesh (India)

    Get PDF
    Himachal Pradesh is a hilly state of Northern India , with its global location between 75°45\u27 - 79°04 \u27 E longitude and 30°22\u27 - 33°12\u27 N latitude. In this part of the country, soybean is indigenously grown as a rainy season crop up to an altitude of 1800 m above mean sea level . The indigenous soybean comprise small seeded, twining type low- yielding varieties

    Electrochemical synthesis and characterization of cubic magnetite nanoparticle in aqueous ferrous perchlorate medium

    Get PDF
    Abstract Electrochemical synthesis of cubic magnetite nanoparticle (MNP) in ferrous perchlorate aqueous medium and its spectral investigations have been carried out. The structural property of MNP is evidenced by X-ray diffraction pattern shows the characteristic peaks. Further the vibrational frequencies of MNP are evaluated using FT-IR and Raman spectroscopic techniques. UV–visible spectroscopic studies show the possibility of surface plasmon resonance effect. The cubic structure of MNP has been confirmed by transmission electron microscope (TEM) technique and it is also evidenced by scanning electron microscope (SEM). The as-synthesized MNP shows superparamagnetic property which is confirmed by the vibrating sample magnetometer, hence it could be useful for synthesis of very ultra superparamagnetic iron oxide solution (VUSPIO) for cancer treatment

    Shape changing nonlocal molecular deformations in a nematic liquid crystal system

    Get PDF
    Abstract The nature of nonlinear molecular deformations in a homeotropically aligned nematic liquid crystal (NLC) is presented. We start from the basic dynamical equation for the director axis of a NLC with elastic deformation and mapped onto a integro-differential perturbed Nonlinear Schrodinger equation which includes the nonlocal term. By invoking the modified extended tangent hyperbolic function method aided with symbolic computation, we obtain a series of solitary wave solutions. Under the influence of the nonlocality induced by the reorientation nonlinearity due to fluctuations in the molecular orientation, the solitary wave exhibits shape changing property for different choices of parameters. This intriguing property as a result of the relation between the coherence of the solitary deformation and the nonlocality reveals a strong need for a deeper understanding in the theory of self-localization in NLC systems

    Polishing of CVD-Diamond Substrates Using Reactive Ion Etching

    Get PDF
    Multichip modules (MCM)have proved to be a viable packaging technology for achieving small size and high performance. By their nature, MCMs typically integrate multiple bare die into a module that can be the plastic or ceramic package. As a result, the MCMrequires an efficient mechanism for removing excess heat. Diamond with its excellent thermal conductivity, is the ideal choice as a substrate material for these applications. Chemical vapor deposited (CVD) diamond substrates makes possible the practical realization of a novel diamond based 3-D MCM. However, the diamond films grown by CVD technique are polycrystalline and have non-uniform filmroughness and randomly faceted crystals. These non-planar surfaces reduce the diamond\u27s thermal management efficiency. Therefore, itbecomes imperative that the asdeposited diamond films be polished for use inMCMs. Chemical assisted mechanical polishing (CAMP) technique has been developed at HiDEC,University of Arkansas. In this technique diamond is lapped against an alumina plate under a load in the presence of certain chemicals. Although CAMP technique reduces the lapping time considerably, stillnewer techniques must be developed to reduce polishing cost further. We are currently using reactive ion etching (RIE) to substantially reduce the polishing time. Preliminary studies using reactive ion etching showed etch rates of 500 - lOOOA/min at low pressures. These etched films showed a considerably higher polishing rate (using CAMP technique) than the nonetched films. Changes in the morphology and structure of the diamond films due to etching and polishing were characterized by scanning electron microscopy (SEM), Dektak profilometer and Raman spectroscopy. This paper presents a systematic study ofRIEand CAMP of CVD-diamond substrates

    Temporal and spatial variations in TEC using simultaneous measurements from the Indian GPS network of receivers during the low solar activity period of 2004?2005

    No full text
    International audienceWith the recent increase in the satellite-based navigation applications, the ionospheric total electron content (TEC) and the L-band scintillation measurements have gained significant importance. In this paper we present the temporal and spatial variations in TEC derived from the simultaneous and continuous measurements made, for the first time, using the Indian GPS network of 18 receivers located from the equator to the northern crest of the equatorial ionization anomaly (EIA) region and beyond, covering a geomagnetic latitude range of 1° S to 24° N, using a 16-month period of data for the low sunspot activity (LSSA) years of March 2004 to June 2005. The diurnal variation in TEC at the EIA region shows its steep increase and reaches its maximum value between 13:00 and 16:00 LT, while at the equator the peak is broad and occurs around 16:00 LT. A short-lived day minimum occurs between 05:00 to 06:00 LT at all the stations from the equator to the EIA crest region. Beyond the crest region the day maximum values decrease with the increase in latitude, while the day minimum in TEC is flat during most of the nighttime hours, i.e. from 22:00 to 06:00 LT, a feature similar to that observed in the mid-latitudes. Further, the diurnal variation in TEC show a minimum to maximum variation of about 5 to 50 TEC units, respectively, at the equator and about 5 to 90 TEC units at the EIA crest region, which correspond to range delay variations of about 1 to 8 m at the equator to about 1 to 15 m at the crest region, at the GPS L1 frequency of 1.575 GHz. The day-to-day variability is also significant at all the stations, particularly during the daytime hours, with maximum variations at the EIA crest regions. Further, similar variations are also noticed in the corresponding equatorial electrojet (EEJ) strength, which is known to be one of the major contributors for the observed day-to-day variability in TEC. The seasonal variation in TEC maximizes during the equinox months followed by winter and is minimum during the summer months, a feature similar to that observed in the integrated equatorial electrojet (IEEJ) strength for the corresponding seasons. In the Indian sector, the EIA crest is found to occur in the latitude zone of 15° to 25° N geographic latitudes (5° to 15° N geomagnetic latitudes). The EIA also maximizes during equinoxes followed by winter and is not significant in the summer months in the LSSA period, 2004?2005. These studies also reveal that both the location of the EIA crest and its peak value in TEC are linearly related to the IEEJ strength and increase with the increase in IEEJ

    Magnetization reversal in a site-dependent anisotropic Heisenberg ferromagnet under electromagnetic wave propagation

    Get PDF
    Abstract Information density and switching of magnetization offers an interesting physical phenomenon which invoke magneto-optical techniques employed on the magnetic medium. In this paper, we explore the soliton assisted magnetization reversal in the nanosecond regime in the theoretical framework of the Landau–Lifshitz–Maxwell (LLM) model. Starting from the Landau–Lifshitz equation, we employ the reductive perturbation method to derive an inhomogeneous nonlinear Schrodinger equation, governing the nonlinear spin excitations of a site-dependent anisotropic ferromagnetic medium under the influence of electromagnetic (EM) field in the classical continuum limit. From the results, it is found that the soliton undergoes a flipping thereby indicating the occurrence of magnetization reversal behavior in the nanoscale regime due to the presence of inhomogeneity in the form of a linear function. Besides, the spin components of magnetization are also evolved as soliton spin excitations

    Genetic structure of a small closed population of the New Zealand white rabbit through pedigree analyses

    Get PDF
    [EN] The genetic structure of a small population of New Zealand White rabbits maintained at the Sheep Breeding and Research Station, Sandynallah, The Nilgiris, India, was evaluated through pedigree analyses. Data on pedigree information (n=2503) for 18 yr (1995-2012) were used for the study. Pedigree analysis and the estimates of population genetic parameters based on the gene origin probabilities were performed. The analysis revealed that the mean values of generation interval, coefficients of inbreeding and equivalent inbreeding were 1.49 yr, 13.23 and 17.59%, respectively. The proportion of population inbred was 100%. The estimated mean values of average relatedness and individual increase in inbreeding were 22.73 and 3.00%, respectively. The percentage increase in inbreeding over generations was 1.94, 3.06 and 3.98 estimated through maximum generations, equivalent generations and complete generations, respectively. The number of ancestors contributing the majority of 50% genes (fa50) to the gene pool of reference population was only 4, which might have led to reduction in genetic variability and increased the amount of inbreeding. The extent of genetic bottleneck assessed by calculating the effective number of founders (fe) and the effective number of ancestors (fa), as expressed by the fe/fa ratio was 1.1, which is indicative of the absence of stringent bottlenecks. Up to 5th generation, 71.29% pedigree was complete, reflecting the well maintained pedigree records. The maximum known generations were 15, with an average of 7.9, and the average equivalent generations traced were 5.6, indicating a fairly good depth in pedigree. The realized effective population size was 14.93, which is very critical, and with the increasing trend of inbreeding the situation has been assessed as likely to become worse in future. The proportion of animals with the genetic conservation index (GCI) greater than 9 was 39.10%, which can be used as a scale to use such animals with higher GCI to maintain balanced contribution from the founders. From the study, it was evident that the herd was completely inbred, with a very high inbreeding coefficient, and the effective population size was critical. Recommendations were made to reduce the probability of deleterious effects of inbreeding and to improve genetic variability in the herd. The present study can help in carrying out similar studies to meet the demand for animal protein in developing countries.The authors acknowledge the support provided by Tamil Nadu Veterinary and Animal Sciences University (TANUVAS) for successful completion of the study.Sakthivel, M.; Balasubramanyam, D.; Kumarasamy, P.; Raja, A.; Anilkumar, R.; Gopi, H.; Devaki, A. (2018). Genetic structure of a small closed population of the New Zealand white rabbit through pedigree analyses. World Rabbit Science. 26(2):101-112. doi:10.4995/wrs.2018.7426SWORD101112262Alderson G.I.H. 1992. A system to maximize the maintenance of genetic variability in small populations. In L. Alderson & I. Bodo (ed). Genetic Conservation of Domestic Livestock II. CABI, Wallingford, UK, 18-29.Boichard D., Maignel L., Verrier E. 1997. The value of using probabilities of gene origin to measure genetic variability in a population. Genet. Sel. Evol., 29: 5-23. https://doi.org/10.1186/1297-9686-29-1-5Cervantes I., Goyache F., Molina A., Valera M., Gutiérrez J.P. 2008. Application of individual increase in inbreeding to estimate realized effective sizes from real pedigrees. J. Anim. Breed. Genet., 125: 301-310. https://doi.org/10.1111/j.1439-0388.2008.00755.xDuchev Z., Distl O., Groeneveld E. 2006. Early warning system for loss of diversity in European livestock breeds. Arch. Anim. Breed., 49: 521-531. https://doi.org/10.5194/aab-49-521-2006Dunner S., Checa M.L., Gutierrez J.P., Martin J.P., Cañon J. 1998. Genetic analysis and management in small populations: the Asturcon pony as an example. Genetics Selection Evolution 30: 397-405. https://doi.org/10.1186/1297-9686-30-4-397Falconer D.S., Mackay T.F.C. 1996. Introduction to Quantitative Genetics. Longmans Green, Harlow, Essex, UK.Fernández J., Toro M.A., Caballero A. 2003. Fixed contributions designs vs. minimization of global conancestry to control inbreeding in small populations. Genetics, 165: 885-894.González-Recio O., López de Maturana E., Gutiérrez J.P. 2007. Inbreeding depression on female fertility and calving ease in Spanish dairy cattle. J. Dairy Sci., 90: 5744-5752. https://doi.org/10.3168/jds.2007-0203Gowane G.R., Chopra A., Misra S.S., Prince L.L.L. 2014. Genetic diversity of a nucleus flock of Malpura sheep through pedigree analyses. Small Ruminant Res., 120: 35-41. https://doi.org/10.1016/j.smallrumres.2014.04.016Goyache F., Gutiérrez J.P., Fernández I., Gomez E., Alvarez I., Díez J., Royo I.J. 2003. Using pedigree information to monitor genetic variability of endangered populations: the Xalda sheep breed of Asturias as an example. J. Anim. Breed. Genet., 120: 95-103. https://doi.org/10.1046/j.1439-0388.2003.00378.xGutiérrez J.P., Altarriba J., Díaz C., Quintanilla A.R., Cañón J., Piedrafita J. 2003. Genetic analysis of eight Spanish beef cattle breeds. Genet. Sel. Evol., 35: 43-64. https://doi.org/10.1051/gse:2002035Gutiérrez J.P., Cervantes I., Goyache F. 2009. Improving the estimation of realized effective population sizes in farm animals. J. Anim. Breed. Genet., 126: 327-332.https://doi.org/10.1111/j.1439-0388.2009.00810.xGutiérrez J.P., Cervantes I., Molina A., Valera M., Goyache F. 2008. Individual increase in inbreeding allows estimating realized effective sizes from pedigrees. Genet. Sel. Evol., 40: 359-378. https://doi.org/10.1051/gse:2008008Gutiérrez J.P., Goyache F. 2005. A note on ENDOG: a computer program for analyzing pedigree information. J. Anim. Breed. Genet., 122: 172-176. https://doi.org/10.1111/j.1439-0388.2005.00512.xHill W.G. 1979. A note on effective population size with overlapping generations. Genetics, 92: 317-322.Lacy R.C. 1989. Analysis of founder representation in pedigrees: founder equivalents and founder genome equivalents. Zoo Biol., 8: 111-123. https://doi.org/10.1002/zoo.1430080203Leroy G., Mary-Huard T., Verrier E., Danvy S., Charvolin E., Danchin-Burge C. 2013. Methods to estimate effective population size using pedigree data: examples in dog, sheep, cattle and horse. Genet. Sel. Evol., 45: 1-10. https://doi.org/10.1186/1297-9686-45-1Maignel L., Boichard D., Verrier E. 1996. Genetic variability of French dairy breeds estimated form pedigree information. Interbull Bull., 14: 49-54.Martín de la Rosa A.J., Cervantes I., Gutiérrez J.P. 2016. Equivalent effective population size mating as a useful tool in the genetic management of the Ibicenco rabbit breed (Conill Pages d'Eivissa). Czech J. Anim. Sci., 61: 108-116. https://doi.org/10.17221/8783-CJASMartínez R.A., García D., Gallego J.L., Onofre G., Pérez J., Cañón J. 2008. Genetic variability in Colombian Creole cattle populations estimated by pedigree information. J. Anim. Sci., 86: 545-552. https://doi.org/10.2527/jas.2007-0175Meuwissen T.H.E. 1991. Expectation and variance of genetic gain in open and closed nucleus and progeny testing schemes. Anim. Prod., 53: 133-141. https://doi.org/10.1017/S0003356100020043Meuwissen T.H.E. 2009. Towards consensus on how to measure neutral genetic diversity? J. Anim. Breed. Genet., 126: 333-334. https://doi.org/10.1111/j.1439-0388.2009.00839.xMeuwissen T.I., Luo Z. 1992. Computing inbreeding coefficients in large populations. Genet. Sel. Evol., 24: 305-303. https://doi.org/10.1186/1297-9686-24-4-305Miglior F., Burnside E.B., Dekkers J.C. 1995. Non additive genetic effects and inbreeding depression for somatic cell counts of Holstein cattle. J. Dairy Sci., 78: 1168-1173.https://doi.org/10.3168/jds.S0022-0302(95)76734-0Moura A.S.A.M.T., Polastre R., Wechsler F.S. 2000. Dam and litter inbreeding and environmental effects on litter performances in Botucatu rabbits. World Rabbit Sci., 8: 151-157. https://doi.org/10.4995/wrs.2000.433Nagy I., Curik I., Radnai I., Cervantes I., Gyovai P., Baumung R., Farkas J., Szendrő Zs. 2010. Genetic diversity and population structure of the synthetic Pannon White rabbit revealed by pedigree analyses. J. Anim.Sci., 88: 1267-1275. https://doi.org/10.2527/jas.2009-2273Nagy I., Farkas J., Onika-Szvath S., Radnai I., Szendrő Zs. 2011. Genetic parameters and inbreeding depression of litter weight in Pannon White rabbits. Agric. Conspec. Sci., 76: 231-233.Nagy I., Gyovai P., Farkas J., Radnai I., Eles V., Szendro Zs. 2012. Effects of selection and inbreeding on growth and carcass traits of Pannon terminal line rabbits. In Proc.. 10th World Rabbit Congress, 3-6 September 2012, Sharm El-Sheikh, Egypt, 93-96.Panetto J.C.C., Gutiérrez J.P., Ferraz J.B.S., Cunha D.G., Golden B.L. 2010. Assessment of inbreeding depression in a Guzerat dairy herd: Effects of individual increase in inbreeding coefficients on production and reproduction. J. Dairy Sci., 93: 4902-4912. https://doi.org/10.3168/jds.2010-3197Pedrosa V.B., Santana Jr. M.L., Oliveira P.S., Eler J.P., Ferraz J.B.S. 2010. Population structure and inbreeding effects on growth traits of Santa Ines sheep in Brazil. Small Ruminant Res., 93: 135-139. https://doi.org/10.1016/j.smallrumres.2010.05.012Pérez-Enciso M. 1995. Use of uncertain relationship matrix to compute effective population size. J. Anim. Breed. Genet., 112: 327-332. https://doi.org/10.1111/j.1439-0388.1995.tb00574.xPlaninc M., Kermauner A., Kovac M., Malovrh S. 2012. Pedigree analysis in the Sika rabbits in Slovenia. Acta Agr. Slov., Supplement 3: 171-173.Rafat S.A., Allain D., de Rochambeau H. 2009. Genetic description of a divergent selection experiment in Angora rabbits with overlapping generations. J. Anim. Breed. Genet., 126: 189-197. https://doi.org/10.1111/j.1439-0388.2008.00769.xSantana Jr M.L., Oliveira P.S., Eler J.P., Gutiérrez J.P., Ferraz J.B.S. 2012. Pedigree analysis and inbreeding depression on growth traits in Brazilian Marchigiana and Bonsmara breeds. J. Anim. Sci. 90: 99-108. https://doi.org/10.2527/jas.2011-4079Sorensen A.C., Sorensen M.K., Berg P. 2005. Inbreeding in Danish dairy cattle breed. J. Dairy Sci., 88: 1865-1872. https://doi.org/10.3168/jds.S0022-0302(05)72861-7Valera M., Molina A., Gutiérrez J.P., Gomes I., Goyache F. 2005. Pedigree analyses in the Andalusian horse: population structure, genetic variability and influence of the Carthusian strain. Livest. Prod. Sci., 95: 57-66. https://doi.org/10.1016/j.livprodsci.2004.12.004Venkataramanan R., Subramanian A., Sivaselvam S.N., Sivakumar T., Sreekumar C., Anilkumar R., Iyue M. 2013. Pedigree analysis of the Nilagiri sheep of South India. Anim. Genet. Resour., 53: 11-18. https://doi.org/10.1017/S2078633613000301Wright S. 1931. Evolution in Mendelian populations. Genetics, 16: 97-159

    On the validity of the ionospheric pierce point (IPP) altitude of 350 km in the Indian equatorial and low-latitude sector

    Get PDF
    The GPS data provides an effective way to estimate the total electron content (TEC) from the differential time delay of L1 and L2 transmissions from the GPS. The spacing of the constellation of GPS satellites in orbits are such that a minimum of four GPS satellites are observed at any given point in time from any location on the ground. Since these satellites are in different parts of the sky and the electron content in the ionosphere varies both spatially and temporally, the ionospheric pierce point (IPP) altitude or the assumed altitude of the centroid of mass of the ionosphere plays an important role in converting the vertical TEC from the measured slant TEC and vice versa. In this paper efforts are made to examine the validity of the IPP altitude of 350 km in the Indian zone comprising of the ever-changing and dynamic ionosphere from the equator to the ionization anomaly crest region and beyond, using the simultaneous ionosonde data from four different locations in India. From this data it is found that the peak electron density height (<i>h<sub>p</sub>F<sub>2</sub></i>) varies from about 275 to 575 km at the equatorial region, and varies marginally from 300 to 350 km at and beyond the anomaly crest regions. Determination of the effective altitude of the IPP employing the inverse method suggested by Birch et al. (2002) did not yield any consistent altitude in particular for low elevation angles, but varied from a few hundred to one thousand kilometers and beyond in the Indian region. However, the vertical TEC computed from the measured GPS slant TEC for different IPP altitudes ranging from 250 to 750 km in the Indian region has revealed that the TEC does not change significantly with the IPP altitude, as long as the elevation angle of the satellite is greater than 50 degrees. However, in the case of satellites with lower elevation angles (<50°), there is a significant departure in the TEC computed using different IPP altitudes from both methods. Therefore, the IPP altitude of 350 km may be taken as valid even in the Indian sector but only in the cases of satellite passes with elevation angles greater than 50°

    Pulmonary lymphoma mimicking metastases: a case report

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens
    • …
    corecore