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Abstract Information density and switching of magnetization offers an interesting physical

phenomenon which invoke magneto-optical techniques employed on the magnetic medium. In this

paper, we explore the soliton assisted magnetization reversal in the nanosecond regime in the

theoretical framework of the Landau–Lifshitz–Maxwell (LLM) model. Starting from the

Landau–Lifshitz equation, we employ the reductive perturbation method to derive an inhomoge-

neous nonlinear Schrödinger equation, governing the nonlinear spin excitations of a site-dependent

anisotropic ferromagnetic medium under the influence of electromagnetic (EM) field in the classical

continuum limit. From the results, it is found that the soliton undergoes a flipping thereby indicat-

ing the occurrence of magnetization reversal behavior in the nanoscale regime due to the presence of

inhomogeneity in the form of a linear function. Besides, the spin components of magnetization are

also evolved as soliton spin excitations.
ª 2014 Production and hosting by Elsevier B.V. on behalf of University of Bahrain.
1. Introduction

The continuous effort in minimizing and search for ultimate
speed of modern computers and magnetic recording media
for data storage give rise to a constant strive to derive and

potentially optimize mechanisms in order to manipulate fast
reversal of magnetic moment of a material (see Fechner
et al., 2012; Kaka and Russek, 2002; Tudosa et al., 2004;
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Adam et al., 2012; Schumacher et al., 2003). The interaction of
light with matter spans a wide range of applications in all opti-
cal devices and has intensive focus in experimental research,

with special attention paid to magnetization reversal that is
running down to the limit of subpico/femtosecond regime.
Generally, so-called magneto-optical switching combines the

merits of magnetic and optical techniques and refers to a qual-
itative method of reversing magnetization in a ferromagnet
simply by circularly polarized light, where the magnetization

direction is controlled by the light helicity (see Stanciu et al.,
2007a). In particular, the magnetization direction is well con-
trolled by the direction of angular momentum of the photons
(see Stanciu et al., 2006, 2007b). On theoretical grounds, it is

shown that such effect may even lead the switching process
down to femtosecond time scale that would be based on the
application of shaped ultrashort laser pulse of certain fre-

quency, duration and polarization (see Gmez-Abal et al.,
2004). Experiments generally use pump-probe processes in
which a high energy laser pulse is used to heat the sample

and a low energy probe pulse is used to monitor the magnetic
response using the magneto-optical Kerr effect (MOKE) (see
Moradi and Ghanaatshoar, 2010; Chau and Hsieh, 1973; Liu

et al., 2011; Montoncello et al., 2008; Georg and Back, 2007).
More qualitative features of the effect of laser on magneti-

zation reversal can be well understood theoretically on the
basis of electromagnetic wave equation proposed by Maxwell

and Landau–Lifshitz (LL) equation that governs the spin
dynamics of magnetic materials. The LL equation constitutes
the basic governing equation for the spin–spin exchange inter-

action in ferro/antiferromagnet which includes crystal anisot-
ropy with some other dominant higher order interactions
namely biquadratic, weak interaction such as Dzyaloshin-

skii–Moriya (DM) interaction, dipole–dipole, and octupole–
dipole interactions (see Daniel and Kavitha, 1999, 2002;
Ahmad Abliz et al., 2009; Kavitha et al., 2010a,b, 2011a,b,

2012). Crystal field anisotropy being a primary interaction in
all magnetic materials elucidates the spin reversal actively
and simultaneously controls the characteristic switching time
(see Uzdin et al., 2012). Moreover, higher order magnetic

interactions also provide significant contribution for magneti-
zation switching and the inhomogeneity present in the medium
can too support for magnetization reversal as demonstrated by

Kavitha et al., recently (see Kavitha et al., 2010a,b, 2011a,b,
2011). Thus the fundamental and the practical limit of speed
of magnetization reversal is a subject of vital importance as

well as one of the intriguing questions of modern magnetism.
In the above respect, recently the study of interaction of

electromagnetic (EM) field in ordered magnetic media has
become an emerging and growing field of research. In this case,

the magnetic field component of the electromagnetic field is
found to excite the magnetization of the ferromagnetic med-
ium in solitonic form and also the small amplitude plane elec-

tromagnetic wave propagates in the form of EM solitons (see
Leblond, 2005). Nakata (1991a,b) and Leblond (2008, 2010)
also show the soliton excitations of EMW components in a fer-

romagnetic medium using a reductive perturbation method by
neglecting the spin-spin exchange energy. Similarly an exten-
sion of the above investigation is made by taking into account

the basic magnetic interaction namely the spin-spin exchange
interaction in isotropic/anisotropic ferro and antiferromag-
netic media (see Veerakumar and Daniel, 1998, 2001).
Recently, the present authors made a rigorous study on the
effect of DM interaction in an antiferromagnet (see Kavitha
et al., 2011), thereby showing that DM interaction induces bre-
atherlike spin excitations in the medium and in addition it

enhances the amplitude of the EM soliton.
This paper communicates this issue and is constructed as

follows. In Section 2, the coupled Landau–Lifshitz–Maxwell

(LLM) equation is reduced to perturbed nonlinear Schrödinger
(NLS) equation through the reductive perturbation method. In
Section 3, we employ the multiple scale perturbation analysis

on the perturbed NLS equation and obtain the soliton param-
eter evolution equations and magnetic spin soliton components
are constructed. The occurence of magnetization reversal is dis-
cussed in Section 4. Section 5 concludes the results.

2. Model and spin dynamics

The system under consideration is a site-dependent anisotropic
ferromagnetic medium exposed to an external magnetic field H

through the propagation of electromagnetic wave governed by
the Landau–Lifshitz equation for the evolution of spin density

in the classical continuum limit. The dynamical equation is
written as follows

@S

@t
¼ S� fJðfSxx þ fxSxÞ � 2ASxn̂þ 2bHg; ð1Þ

where n̂ ¼ ð1; 0; 0Þ and suffix x represents partial differentia-
tion, J is the exchange integral, f is the site dependent co-effi-
cient which varies appropriately from site to site, A is the

anisotropic parameter that tends the magnetization to favor
along the x-direction and b ¼ clB, where, c is the gyromag-
netic ratio and lB represents Bohr magneton. In general the

inhomogeneity occurs in the magnetic system if (a) the distance
between neighboring atoms varies along the lattice, thereby
altering the overlap of electronic wave functions, e.g. charge
transfer complexes TCNQ or organometallic insulators TTF

bisdithiolenes, and (b) the wave function itself varies from site
to site although the atoms themselves may be equally spaced,
e.g. a one-dimensional magnetic insulator placed in a weak,

static, inhomogeneous electric field with the deliberate intro-
duction of imperfections in the vicinity of a bond so as to alter
the electronic wave functions without causing appreciable lat-

tice distortion. Since the overlapping of wavefunction varies
from site to site, the associated interaction is termed as ‘site-
dependent interaction’ as designated by fðxÞ in Fig. 1.

We consider the propagation of electromagnetic waves in a
magnetic material medium in the presence of an external mag-
netic field. The governing Maxwell’s equations are the follow-
ing (see Jackson, 1993):

r� E ¼ � @B
@t
; ð2Þ

r �H ¼ @D
@t
: ð3Þ

In Eqs. (2) and (3), E;D;H and B are respectively the electric
field, the electric induction, the magnetic field and the magnetic
induction. The constitutive equation for E and D is

D ¼ eE; ð4Þ

where we shall assume that e is the scalar permeability of the
magnetic medium, whereas the constitutive equation for H

and B is



Figure 1 Schematic diagram representing the inhomogeneous ferromagnetic system excited by the electromagnetic wave (EMW).
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B ¼ lðHþ SÞ; ð5Þ

where, l is the magnetic permeability of the medium and S is
the magnetization density in the magnetic medium of propaga-
tion. Eliminating E;D and H, from Eqs. (2)–(5), we have

Bxx � leBtt ¼ l Sxx � n̂Sx
xx

� �
: ð6Þ

It is interesting to note that if the magnetization S is zero, then
the above Eq. (6) would be the linear wave equation, satisfied

by the isotropic, dispersionless transverse waves, propagating
at speed c ¼ ðleÞ�1=2. The set of coupled Eqs. (1) and (6) com-
pletely describe the propagation of EM wave in an anisotropic
site-dependent ferromagnetic medium which we wish to solve

in the consecutive section using a perturbation theory.

3. Perturbation scheme and nonlinear Schrödinger equation

Having derived the equations of motion, the task now lies in
solving them to understand the underlying spin excitations.
We find Eqs. (1) and (6) as a set of highly nontrivial nonlinear

coupled partial differential equations which are not amenable
to exact analysis in general. In this section, we attempt to solve
the coupled Landau–Lifshitz equations for magnetization and

the Maxwell’s equations for electromagnetic field within the
frame work of reductive perturbation method along the lines
of Taniuti, Yajima and others (see Taniuti and Yajima,
1969; Leblond, 2008). This technique adopts the nonlinear

modulation of the slowly varying envelopes of EM plane
waves of small but finite amplitude in the antiferromagnetic
medium. In order to carry out this perturbation, the magneti-

zation of the medium and the magnetic induction of the EM
field have to be expanded nonuniformly in the anisotropic
weak antiferromagnetic medium. Since, the easy axis of mag-

netization of the anisotropic medium lies parallel to the direc-
tion of propagation (x-direction), we assume that at the lowest
order of expansion, the magnetization of the medium and the

magnetic induction lie parallel to the propagation axis and
turn around to the ðy� zÞ plane at higher orders. Therefore
writing S ¼ ðSx;Sy;SzÞ and B ¼ ðBx;By;BzÞ and expressing
the Fourier components of S and B in powers of a small

parameter �, we write

Sx ¼ S0 þ
X1
n¼1
�nSx

nðf; sÞ þ � � � ;

Sa ¼ �1=2
X1
n¼1

�nSa
nþ1ðf; sÞ; ð7Þ

and

Bx ¼ B0 þ
X1
n¼1
�nBx

nðf; sÞ þ � � � ;

Ba ¼ �1=2
X1
n¼1

�nBa
nþ1ðf; sÞ: ð8Þ
In the above perturbative expansions, S0 and B0 characterize
the unperturbed state of the system, the small parameter �
measures the perturbation of the applied magnetic field or
the amplitude of the perturbed field and a ¼ y; z. Also, we con-
sider, the components are functions of the slow variables f and
s introduced through the stretching f ¼ �ðx� vtÞ and s ¼ �t
with v being the velocity of the pulse and time variable
accounts for the evolution of the propagating pulse. As the
medium is ferromagnetic in character, we assume that the

value of the dielectric constant e of the medium is small and
hence we rescale e as �2e. Also, we assume that the bilinear
exchange interaction is stronger than Zeeman energy, hence

rescaling J as ��1J and b as �b. We now substitute the expan-
sions for S and B as given in Eqs. (7) and (8) in the component
form of Eqs. (1) and (6) with the subsequent scaling defined
above and then collecting and solving the coefficients at differ-

ent orders of �, we get
At the order (e0):

B0 ¼ 0; ð9Þ
By

1 ¼ lSy
1; ð10Þ

Bz
1 ¼ lSz

1; ð11Þ

and
At the order (e1):

Bx
1 ¼ 0; ð12Þ

By
2¼ lSy

2; ð13Þ

Bz
2¼ lSz

2; ð14Þ

@Sx
1

@s
� v

@Sx
1

@f
¼ Jf Sy

1

@2Sz
1

@f2
�Sz

1

@2Sy
1

@f2

� �
þJff Sy

1

@Sz
1

@f
�Sz

1

@Sy
1

@f

� �
; ð15Þ

v
@Sy

1

@f
�@S

y
1

@s
¼S0 Jf

@2Sz
1

@f2
þJff

@Sz
1

@f

� �
þ2ASx

1S
z
1þ

2b
l
S0B

z
1; ð16Þ

@Sz
1

@s
� v

@Sz
1

@f
¼S0 Jf

@2Sy
1

@f2
þJff

@Sy
1

@f

� �
þ2ASx

1S
y
1þ

2b
l
S0B

y
1: ð17Þ

Now, we define a new complex variable u ¼ Sy
1 � iSz

1,

juj2 ¼ A
JbS0

Sx
1 , such that Eqs. (16) and (17) can be reduced to

the following NLS equation with the inhomogeneity function
f ¼ axþ b and an appropriate rescaling yields

iut þ uxx þ 2juj2u ¼ k½xuxx þ ux�; ð18Þ

where, k ¼ � a
b
; a and b are arbitrary constants. When k ¼ 0,

Eq. (18) is a well known completely integrable cubic nonlinear
Schrödinger (NLS) equation with associated soliton solution

(see Zakharov and Shabat, 1973; Ablowitz and Segur, 1981)
and the term on the right side of (18) represents a small pertur-
bation added to the simple cubic NLS equation. It is the aim of

the present paper to look for magnetization switching in the
ferromagnetic medium for which we wish to solve Eq. (18)
for the soliton parameter evolution equations in the next
section. Some insights into the mechanism of controlling
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soliton were gained in Ref. (see Kavitha et al., 2010a,b;

Kavitha and Daniel, 2003) where the magnetization reversal
in ferromagnetic material was established through soliton.
The electromagnetic wave dynamics exploiting localized exci-

tations experimentally have already been reported in materials
such as yttrium iron garnet (see Chen et al., 1993) and Cu
benzoate AFHC (Dender et al., 1997).

4. Multiple scale perturbation analysis

It is not easy to obtain exact solutions of nonlinear systems in
all cases. In order to obtain information about the system

under consideration, we are forced to attempt approximation
methods such as perturbation analysis. There are a number
of perturbation schemes available in the literature which

exploit the proximity of the perturbed NLS Eq. (18) to the
completely integrable case of the pure NLS equation, i.e.,
Eq. (18) with k ¼ 0. We employ one such method namely

multiple scale perturbation analysis suggested by Kodama
and Ablowitz (1981) to witness the presence of soliton in the
ferromagnetic medium through which magnetization reversal

has been established. The envelope one soliton solution for
the cubic NLS can be written as u ¼ gsechgðh� h0Þ
exp½inðh� h0Þ þ iðr� r0Þ�, where ht ¼ �2n; hx ¼ 0, rt ¼ g2þ
n2; rx ¼ 0. The parameter g and n are related to the scattering

parameter of the inverse scattering transform analysis. Now we
write g; n, h; h0; r and r0 as functions of a new time scale T.
Considering û0 as the exact one soliton solution corresponding

to the unperturbed part of Eq. (18), we introduce certain fast
variable h and a slow variable T ¼ kt. Therefore Eq. (18) has
the solution of the form

u ¼ ûðh;T; kÞ exp½inðh� h0Þ þ iðr� r0Þ�; ð19Þ

and it may be noted that in the case of one soliton solution, we
need only one fast variable. Therefore, we expand û in the form

ûðh;T; kÞ ¼ û0ðh;TÞ þ kû1ðh;TÞ þ � � � ; ð20Þ

and neglecting the higher order terms. In the above Eq. (20), û0
is the unperturbed soliton for the unperturbed schrodinger

equation and û1 is the first order perturbed soliton solution.
Using Eqs. (19) and (20) in Eq. (18), we obtain

� g2û0 þ û0hh þ 2jû0j2û0 ¼ 0; ð21Þ
� g2û1 þ û1hh þ 4jû0j2û1 þ 2û20û

�
1 ¼ Fðû0Þ; ð22Þ

where,

Fðû0Þ ¼ u0h þ ðh� h0Þûhh � n2ðh� h0Þû� û½nTðh� h0Þ
� nh0T � r0T� þ i½ûT þ ûnþ 2nðh� h0Þûh�: ð23Þ

Eq. (21) corresponds to the unperturbed NLS equation for the
variable û0 which admits the leading order solution in the form
of û0 ¼ gsechgðh� h0Þ and Eq. (22) represents the first order
perturbed equation. Separating the complex Eq. (22) into a

set of real equations by substituting û1 ¼ /̂1 þ iŵ1, where /̂1

and ŵ1 are real functions, we obtain

L1/̂1 ¼ �g2/̂1 þ /̂1hh þ 6û20/̂1 ¼ RFðû0Þ; ð24Þ
L2ŵ1 ¼ �g2ŵ1 þ ŵ1hh þ 2û20ŵ1 ¼ IFðû0Þ; ð25Þ

where, L1 and L2 are self-adjoint operators. The real RFðû0Þ
and imaginary IFðû0Þ part of Fðû0Þ are given by
RFðû0Þ ¼ û0h þ ðh� h0Þû0hh � n2ðh� h0Þû0
þ û0ðnTðh� h0Þ � nh0T � r0TÞ; ð26Þ

IFðû0Þ ¼ �û0T þ nû0 þ 2nðh� h0Þû0h: ð27Þ

As û0h and û0 are solutions to the homogeneous part of Eqs.

(24) and (25) respectively the secularity conditions yieldZ 1

�1
û0hRFdh ¼ 0; ð28Þ

Z 1

�1
û0IFdh ¼ 0: ð29Þ

On explicitly evaluating the integrals (28) and (29), respec-
tively, we obtain the time evolution of the soliton parameters
namely amplitude and velocity.

4.1. Magnetization reversal

Theoretical investigations on magnetization reversal in mag-

netic materials have been a growing interest in recent times
(see Sabareesan and Daniel, 2011; Daniel and Sabareesan,
2009). Sabareesan and Daniel (2011), Daniel et al. show ana-

lytically that the switching time in permolloy thin film has been
reduced considerably to subpico second level when the external
field applied goes beyond some threshold limit also the switch-
ing time reduces when the magnetic surface anisotropy

increases. Recently, Rahman et al., elucidate the reversal
mechanism in nanocrystalline magnetic films by adopting
two reliable techniques namely Magneto-Optical Kerr Effect

(MOKE) and nanosecond pulsed field magnetometer (see
Rahman et al., 2007). These authors show that the magnetiza-
tion reversal in the film occurs at the order of nanosecond. In

this direction, we establish the magnetization switching mech-
anism in the ferromagnetic medium through EM soliton at
nanosecond regime on the theoretical grounds. The presence
of inhomogeneity in the medium certainly raises question

about the role of soliton and its participation in magnetization
reversal. It is well known that the inhomogeneity in the form of
a linear function completely supports soliton spin excitations

that admit Lax pair (see Porsezian, 1997) and show integrabil-
ity. However, when the inhomogeneity is in the form of a non-
linear function, the velocity and amplitude of the soliton

increase as time passes and reach a maximum and suddenly flip
leading to the magnetization reversal and move in the opposite
direction (see Daniel and Kavitha, 2002). Since the velocity of

the soliton is inversely proportional to the inhomogeneity the
soliton damps very quickly in case of highly inhomogeneous
medium. In the case of a localized inhomogeneity (see
Kavitha et al., 2010a,bKavitha et al., 2010) the amplitude of

the soliton infact oscillates with double periodicity and shows
a marginal reversal in the amplitude. The velocity of the soli-
ton shows dramatic turns at the points when it reverses or

switches in the nanosecond regime. Thus the presence of inho-
mogeneity makes a sustainable oscillation for soliton through
which the magnetization reversal occurs. In order to witness

the presence of magnetization reversal through soliton, we
invoke the secularity conditions obtained in the previous sec-
tion for the evolution of soliton parameters namely velocity
n and amplitude g. Now making use of û0h and û0 in the above

secularity conditions and integrating them leads to

nT ¼ n2 þ 1

3
g2 and gT ¼ 0: ð30Þ



0Þ
Figure 2 Evolution of velocity of the EM soliton for the various

values of amplitude (a) g ¼ 2:0, (b) g ¼ 3:0 and (c) g ¼ 4:0 with

c0 ¼ 0:5.
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Upon solving these equations one can obtain,

nðTÞ ¼ gffiffiffi
3
p tan

gffiffiffi
3
p ðTþ c0Þ
� �

; ð31Þ

where, c0 is the constant of integration and the amplitude of
the soliton g which is time independent. We demonstrate the
magnetization reversal through flipping of EM soliton by plot-

ting Eq. (31) for the evolution of velocity of the soliton nðTÞ by
choosing the parameter c0 ¼ 0:5. From the plots shown in
Fig. 2, we observe that the presence of inhomogeneity in the

spin chain induces the magnetization reversal through flipping
of EM soliton. The exact balance between nonlinearity and
dispersion of the EM wave leading to the formation of EM sol-

iton in the medium. However, the amplitude evolution of the
soliton g remains constant as time passes whereas the velocity
evolution of the soliton periodically changes. That is, the soli-
ton moves with varying speed along the spin lattice so that it

reaches a maximum velocity. Then, there is an imbalance gen-
erated by inhomogeneity between the dispersion and nonlin-
earity, instigating the soliton to switch over to negative

direction in order to balance the influence of dispersion and
nonlinearity. Further, the velocity of the soliton reaches a
maximum value in a short period in the negative direction

and hence again an imbalance is created between the disper-
sion and nonlinearity and thereby switching over to positive
direction very slowly. In this way, a sequential balance and

imbalance between the dispersion and nonlinearity leads to
the reversal of magnetization through the coherent solitonic
evolution periodically. Thus the velocity of the soliton contin-
uously switches over to positive to negative and negative to

positive leading to the magnetization reversal as time passes.
From the Fig. 2, the switching time reduces considerably from
2.5 to 1.2 nano time units (ntu) for increasing the value of

amplitude g as g ¼ 2:0, g ¼ 3:0 and g ¼ 4:0 as evidenced from
the plots. When the amplitude of the soliton is high, the fre-
quency of flipping soliton shoots up in Giga Hz and the switch-

ing time reduces further and which may have potential
application in optimizing the speed of data storage and retrie-
val in magnetic systems.

4.2. Perturbed solitons

The perturbed soliton solutions can be constructed by solving
Eq. (24) for /̂1 and Eq. (25) for ŵ1 using nT and gT. The homo-

geneous part of Eq. (24) admits two particular solutions /̂11

and /̂12 which are of the form

/̂11 ¼ sechgðh� h0Þ tanh gðh� h0Þ; ð32Þ

/̂12 ¼ �
1

g
sechgðh� h0Þ �

3

2
gðh� h0Þsechgðh� h0Þ tanh gðh� h

�

� 1

2
tanh gðh� h0Þ � sinh gðh� h0Þ

�
: ð33Þ

Knowing the two particular solutions, the general solution for

/̂1 can be obtained through the formula

/̂1 ¼ d1/̂11 þ d2/̂12 � /̂11

Z h

�1
/̂12RFdh0 þ /̂12

Z h

�1
/̂11RFdh0;

ð34Þ

where, d1 and d2 are the arbitrary constants. Using Eqs. (32)
and (33) and RF in Eq. (26) and after evaluating the integrals,
we obtain the general solution for /̂1. The solution contains

the secular term which makes the solution unbounded can be
removed by choosing

d2 ¼ 0: ð35Þ

Further, using the boundary conditions

/̂1ð0Þjh0¼0 ¼ 0; /̂1hð0Þjh0¼0 ¼ 0; ð36Þ

we obtain



Figure 3 Real part ð/̂1Þ of the perturbed EM spin soliton for the parametric values (a) g ¼ 1:5, (b) g ¼ 0:8 (c) g ¼ 0:8. k ¼ 0:1 on all

plots.
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d1 ¼
5

12
: ð37Þ

Using Eqs. (35) and (37), the explicit form of /̂1 is constructed
and is given by

/̂1¼
1

6
gðh�h0Þsechgðh�h0Þ�

1

4
ðnh0Tþr0TÞðh�h0Þþ

2

3
gðh�h0Þ

� �

� sechgðh�h0Þ tanhgðh�h0Þ: ð38Þ

In a similar fashion, the solution for w1 can be evaluated
by solving Eq. (25). The homogeneous part of Eq. (25)
admits two particular solutions ŵ11 and ŵ12 which are of the
form
ŵ11 ¼ sechgðh� h0Þ; ð39Þ

ŵ12 ¼
1

2g
½gðh� h0Þsechgðh� h0Þ þ sinh gðh� h0Þ�: ð40Þ

Knowing the two particular solutions, the general solution for
ŵ1 can be obtained through the following

ŵ1 ¼ d3ŵ11 þ d4ŵ12 � ŵ11

Z h

�1
ŵ12IFdh

0 þ ŵ12

Z h

�1
ŵ11IFdh

0;

ð41Þ

where, d3 and d4 are the arbitrary constants. By substituting
Eqs. (39) and (40) in Eq. (41) and after evaluating the integrals,
we obtain the general solution for ŵ1. However, the solution



Figure 4 Imaginary part ðŵ1Þ of the perturbed EM spin soliton for the parametric values (a) g ¼ 0:9, (b) g ¼ 0:75, (c) g ¼ 0:91. k ¼ 0:695

on all plots.
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contains the secular term which makes the solution unbounded

is removed by choosing

d4 ¼ 0: ð42Þ

On using the boundary conditions

ŵ1ð0Þjh0¼0 ¼ 0; ŵ1hð0Þjh0¼0 ¼ 0; ð43Þ

we get

d3 ¼ 0: ð44Þ

Using Eqs. (42) and (44), the explicit form of ŵ1 is constructed
and is given by
ŵ1 ¼
1

2
ngðh� h0Þ2 �

g
4
ðh� h0ÞTðh� h0Þ

� �
sechgðh� h0Þ: ð45Þ

Having obtained the explicit form of /̂1 and ŵ1, the first order
perturbed soliton û1 can be constructed through the relation
û1 ¼ /̂1 þ iŵ1. The solution for û1 is

û1¼
1

6
gðh�h0Þsechgðh�h0Þ�

1

4
ðnh0Tþr0TÞðh�h0Þ

�

þ2g
3
ðh�h0Þ

�
sechgðh�h0Þ� tanhgðh�h0Þ

þ i
n
2
gðh�h0Þ2�

g
2
ðh�h0ÞTðh�h0Þ

� �
sechgðh�h0Þ

	 

: ð46Þ



Figure 5 Propagation of x-component Sx
1

� �
of EM spin component with g ¼ 0:5 and k ¼ 0:001.

Figure 6 Propagation of y-component Sy
1ð Þ of EM spin component with (a) g ¼ 3:9, (b) g ¼ 2:87, (c) g ¼ 2:87 with k ¼ 0:652.
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To validate the presence of magnetization reversal through the
EM spin soliton, we have plotted the real and imaginary part of
the perturbed soliton solutions for the specific choices of
parameters in Figs. 3 and 4. Fig. 3 exploits the real part ð/̂1Þ
of the perturbed soliton through multiple flipping and its ampli-
tude exhibits an oscillating behavior both in positive and nega-
tive directions. In the corresponding contour plots shown aside,
the yellow and blue regions represent the zero amplitude of the



Figure 7 Propagation of z-component Sz
1

� �
of EM spin component with (a) g ¼ 1:22, (b) g ¼ 1:22, (c) g ¼ 1:372 with k ¼ 0:3.

88 L. Kavitha et al.
soliton and dark line represents the flipping region. Again when
the amplitude of the flipping soliton is higher, it enhances the
speed of the switching soliton as portrayed in Fig. 3b and c.

A similar trend is observed for the imaginary part ðŵ1Þ of the
perturbed EM soliton for the parametric choices k ¼ 0:1 and
g ¼ 0:9; 0:75; 0:91 as shown in Fig. 4 which depict the existence

of multiple peaks of the switching soliton supporting the rever-
sal in the ferromagnetic medium. The imaginary part of the per-
turbed soliton indicates that the amplitude of the soliton
increases to negative maximum and then flips to the positive

maximum representing a 3-dimensional equivalent version of
the velocity evolution as shown in Fig. 2. This soliton flipping
occurs in the medium indefinitely thereby confirming the mag-

netization reversal in the spin lattice.

Sx
1 ¼ �

1

2S0

û20 þ 2kû0/̂1

 �
; ð47Þ

Sy
1 ¼ ðû0 þ k/̂1Þ cos a� kŵ1 sin a; ð48Þ

Sz
1 ¼ �ðû0 þ k/̂1Þ sin a� kŵ1 cos a ð49Þ
where, a ¼ nðh� h0Þ þ ðr� r0Þ and û0 ¼ gsechgðh� h0Þ. The
spin density distribution of the magnetization is shown in
Fig. 5. The x component of magnetization shows antikink sol-

iton profile (Fig. 5a) whereas the y component of the EM spin
soliton shows multiple switching of soliton admitting a peri-
odic behavior with amplitudes fluctuating in the positive and

negative directions as depicted in Fig. 6. In the contour plots,
the dark red and yellow spots show the positive and negative
amplitude fluctuating regions in contrast, the uniform plain
region indicates the zero amplitude of the switching EM spin

soliton. The z component of the EM spin soliton (Fig. 7)
depicts a similar trend as predicted for the y component of
the EM soliton. The dark spots shown in contour plots of

Fig. 7 represent the switching EM spin soliton whereas the
plain uniform region shows the zero amplitude of the soliton.
Thus from the above EM spin soliton flipping phenomenon

which leads to magnetization reversal in a ferromagnetic med-
ium is expected to have potential applications in magnetic
memories and recording.
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5. Conclusion

In summary, the nonlinear spin dynamics of the one-dimen-
sional site-dependent bilinear anisotropic ferromagnet under

the influence of electromagnetic field is well established
through perturbed nonlinear Schrödinger equation. Using an
effective reductive perturbation method and multiscale pertur-

bation analysis, we have unambiguously demonstrated the
magnetization reversal dynamics in the ferromagnetic medium
and find that the velocity of soliton undergoes magnetization
reversal behavior in the nanosecond regime due to the presence

of inhomogeneity in the form of linear function, whereas the
amplitude of the soliton remains constant. The reversal process
is further confirmed by the perturbed soliton solution obtained

through perturbation analysis which shows amplitude fluctua-
tions in both positive and negative directions. In addition, the
spin component of the magnetization exhibits the variation of

magnetization in the form of EM spin soliton.
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