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Abstract

The nature of nonlinear molecular deformations in a homeotropically aligned nematic liq-

uid crystal(NLC) is presented. We start from the basic dynamical equation for the director

axis of a NLC with elastic deformation mapped onto a integro-differential perturbed Nonlinear

Schrödinger equation which includes the nonlocal term. By invoking the modified extended tan-

gent hyperbolic function method aided with symbolic computation, we obtain a series of solitary

wave solutions. Under the influence of the nonlocality induced by the reorientation nonlinear-

ity due to fluctuations in the molecular orientation, the solitary wave exhibits shape changing

property for different choices of parameters. This intriguing property, as a result of the relation

between the coherence of the solitary deformation and the nonlocality, reveals a strong need for

deeper understanding in the theory of self-localization in NLC systems.
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1. Introduction

Nonlinear dynamics of liquid crystals has been a subject of intensive study for more than two

decades [1-2]. Not surprisingly, in both basic and applied research solitons have been found

to have important effects in the mechanical, hydrodynamical and thermal properties of these

highly nonlinear liquid crystals and play an important role in the switching mechanism of some

ferroelectric liquid crystal displays [3-5]. In a nematic liquid crystal (NLC), the molecules are

considered as elongated rods which are positionally disordered but reveal a long-range orienta-

tional order. This property is described on a mesocopic level by a unit vector n(r), which is

called director axis pointing in the direction of the average molecular alignment. Due to the

absence of a permanent polarization in the nematic phase the director just indicates the orien-

tation but it has neither head nor tail. However, director reorientation or molecular excitation

in NLC systems takes place due to elastic deformations such as splay, twist and bend [6].

The nonlinearity due to reorientation effect in a nematic phase leads to numerous effects not

observed in any other types of nonlinearity. The nonlinear behaviour leads to soliton and under

suitable conditions solitary waves can exist in NLC which has been investigated extensively both

from theoretical and experimental points of view [7-16]. Propagation of solitons in a uniform

shearing nematics was first studied by Lin et al. [6] and Zhu experimentally confirmed the ex-

istence of solitary-like director wave excited by a mechanical method [7]. Magnetically induced

solitary waves were found to evolve in a NLC which was first discovered by Helfrich [8] and

later confirmed by Legar [9]. Further, Migler and Meyer reported the novel nonlinear dissipative

dynamic patterns and observed several types of soliton structures in the case of NLC under

the influence of a continuously rotating magnetic field [10]. In addition, external field effects,

multisolitons and the relation between observed optical-interference patterns and the director

reorientation have also been investigated [11]. Single solitons generated by pressure gradients

in long and circular cells of nematics, respectively, have also been reported recently [12]. Re-

cently Daniel et al. studied the director dynamics in a quasi-one-dimensional NLC under elastic

deformations in the absence of an external field without imposing the one constant approxima-

tion [17-18]. The molecular deformation in terms of a rotational director axis field is found to

exhibit localized behaviour in the form of pulse, hole and shock as well as solitons [19].

In the present paper, we assume that our liquid crystal system is contained in an extremely

narrow container with homeotropic alignment of molecules and with strong surface anchoring

at the boundaries as illustrated in Figure 1. In this case, the molecular field due to elastic

energy is assumed to be parallel to the director axis, which necessarily involves splay and bend

type deformations in addition to twist. We attempt to demonstrate the shape changing director

dynamics by employing the modified extended tangent hyperbolic (METF) method to solve the

associated dynamical equation and understand the nonlinear dynamics.

The plan of the paper is as follows. We construct the dynamical torque equation representing
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the director dynamics and recast the same as equivalent to a perturbed nonlocal nonlinear

Schrödinger (NLS) equation using the space-curve mapping procedure. We solve the perturbed

integro-differential NLS by means of a computerized symbolic computation and the METF

method is employed to construct a series of solitary wave solutions. Finally, we conclude our

results.

2. Director dynamics

Liquid crystals are anisotropic materials with an anisotropy axis with molecular orientation.

At a given temperature, NLC molecules fluctuate around the mean direction defined by the

director n(r). The distortion of the molecular alignment corresponds to the free energy density

of NLC [20-23] given by

f =
1

2
{K1(∇ · n)2 +K2(n · (∇xn))2 +K3(nx(∇xn))2}, (1)

where Ki represents elastic constants for three different basic cannonical deformations splay

(i = 1), twist (i = 2) and bend (i = 3). These constants are phenomenological parameters which

can be connected with the intermolecular interaction giving rise to the nematic phase. Usually

K3 > K1 > K2, but Eq. (1) is simplified by assuming the one-elastic constant approximation

K3 ≃ K1 ≃ K2 = K. We ignore spatial variations in the degree of orientational order and

describe the NLC in terms of the director rather than the order parameter tensor. We also

ignore the effects of flow and work in the one-elastic approximation. Under this approximation,

the free energy density given in Eq. (1) takes the simple form

f =
K

2
{(∇ · n)2 + (∇xn)2}. (2)

To obtain the equation of motion, it is necessary to describe the generalized thermodynamic

force acting on the director. We note that the molecular field hel corresponding to the pure

elastic deformations using the Lagrange equation hi = − ∂f
∂ni

+∂j
∂f

∂gi,j
, i, j = x, y, z and gij = ∂jni

satisfies h̃ = h− (h · n)n introduced by de Gennes [1]. The quantity (h · n) may be interpreted

as the Lagrange multiplier associated with the constraint that n2 = 1 and the condition for

equilibrium is that h̃ = 0 or h̃ = (h ·n)n. Nematic liquid crystals are charge carrying fluids with

long range, uniaxial orientation and molecular alignment giving rise to anisotropic, macroscopic

properties. By virtue of the anisotropic properties of nematic liquid crystals, it is advantageous

to study the dynamics of director axis n(r) instead of studying the dynamics of all the molecules.

In the absence of flow, the director axis n(r) does not remain in the same position but fluctuates

about the mean position which is mainly due to the thermodynamical force caused by elastic

deformation in nematics in the form of splay, twist and bend. Away from the equilibrium in

the absence of flow, the thermodynamic force is balanced by a viscous force and the dynamics

of the director is

γ
∂n

∂t
= h̃, (3)
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where γ is a viscosity coefficient. In our model, NLC is contained in an extremely narrow

container with the two ends along x-axis open and infinite. We assume rigid homoeotropic

anchoring at the boundary walls. This gives the equation of motion

∂n

∂t
=
K

γ

[

∇2n + (n · ∇2n)n
]

. (4)

Having derived the equation of motion to represent the dynamics the task ahead is to solve

Eq. (4) and to understand the underlying director oscillations. However, Eq. (4) is a highly

nontrivial vector nonlinear partial differential equation and it is very difficult to solve it in

its natural form. This difficulty can be overcome by rewriting Eq. (4) in a suitable equivalent

representation before solving. Experience shows that this can be done by mapping the NLC onto

a moving helical space curve [24] in E3 using a procedure in differential geometry in which Eq.

(4) can be mapped to one of the Nonlinear Schrödinger family of equations or to its perturbed

version. We map the NLC at a given instant of time onto a moving helical space curve in E3 and

a local coordinate system ei , (i = 1, 2, 3) is formed on the space curve by identifying the unit

director axis n(x, t) with the tangent vector e1(x, t) of the space curve and by defining the unit

principal and binormal vector e2(x, t) and e3(x, t), respectively, in the usual way. The change

in the orientation of the orthogonal trihedral ei(x, t), (i = 1, 2, 3) which defines the space curve

uniquely within rigid motions is determined by the Serret-Frenet (S-F) equations [25-26]




~e1x

~e2x

~e3x



 =





0 κ 0
−κ 0 τ

0 −τ 0









~e1

~e2

~e3



 , (5)

where κ ≡ (e1xe1x)
1

2 and τ ≡ 1
κ2e1(e1x ∧ e1xx) are the curvature and torsion of the space curve.

In view of the above identification and upon using the S-F Eqs. (5) eit can be found and the

trihedral evolves as

eit = Ω ∧ ei, Ω = ω1e1 + ω2e2 + ω3e3, (6)

where ω1 = 1
κ(2τκx+κτx) , ω2 = −κτ and ω3 = κx. Here the suffices t and x represent partial

derivatives with respect to t and x. The conditions for compatibility of S-F equations (5) of the

trihedron given by

(eix)t = (eit)x, i = 1, 2, 3, (7)

lead to the following evolution equations for curvature and torsion of the space curve

γ

K
κt = κxx − κτ2, (8a)

γ

K
τt = κτ2 +

(

1

κ2
(κτ 2)x

)

x

. (8b)

In order to identify the set of coupled equations (8) with a more standard nonlinear partial

differential equation, we make the following complex transformation

ψ(x, t) =
1

2
κ(x, t) exp

{

i
∫ x

−∞
τ(x′, t)dx′

}

, (9)
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also with appropriate rescaling of time and spatial variable as t −→-iµ
2Kt
γ

and ψ −→ µψ, we

obtain the following integro-differential Nonlinear Schrödinger equation

iψt + ψxx + 2|ψ|2ψ + µψ
∫ x

−∞
(ψ∗ψx′ − 3ψψ∗

x′)dx′ = 0. (10)

Eq. (10) is a perturbed nonlinear Schrödinger equation and represents the director dynamics of

our NLC system. When µ = 0, Eq. (10) reduces to well-known completely integrable cubic Non-

linear Schrödinger equation which possess N-soliton solutions. The high anisotropy of physical

properties as well as the collective behaviour of nematic molecules lead to nonlinear behaviour

of the system, thus leading to nonlinear oscillations of the director axis n(r) governed by soli-

tons. It might by mentioned that Eq. (10) resembles the damped NLS discussed by Pereira

and Stenflo [27] except for the nonlocal term. In Eq.(10), µ represents the strength of nonlocal

nonlinearity arises especially due to the molecular deformations and director oscillations. This

nonlocal nature often results from transport processes such as atom diffusion, heat transfer, drift

of electric charges [28-29] and in this case it is induced by a long range molecular interactions

in NLC, which exhibit orientational nonlinearity [30-32]. Spatial nonlocality of the nonlinear

response is a generic property of a wide range of physical systems, which manifests itself in new

and exciting properties of nonlinear waves. This nonlocality implies that the response of the

NLC medium at a given point depends not only on the wave function at that point(as in local

media), but also on the wave function in its vicinity. In various areas of applied nonlinear sci-

ence, nonlocality plays a relevant role and radically affects the underlying physics. Some striking

evidences are found in plasma physics [31], in Bose-Einstein condensates (BEC) [32], where con-

trary to the prediction of purely local nonlinear models, nonlocality may give rise to or prevent,

the collapse of a wave. In nonlinear optics, particularly when dealing with self-localization and

solitary waves, nonlocality is often associated to time-domain phenomena through a retarded

response, spatially nonlocal effects have been associated to photorefractive and thermal or diffu-

sive processes [33]. In this context, we would like to investigate the effect of nonlocal term on the

solitary director oscillations by constructing an exact solution to Eq.(10) using computational

algebraic methods. It is a standard feature of nonlinear systems that exact analytic solutions

are possible only in exceptional cases. In order to obtain the nature of nonlinear excitations of

the system under consideration, we are often forced to attempt approximation methods. More

recently, searching for exact solutions of nonlinear problems has attracted a considerable amount

of research work and series of solutions can be found using symbolic computation.

3. Shape changing solitary oscillations

Various powerful methods for obtaining solitary wave solutions have been proposed such as

Hirota’s bilinear method , Painlevé expansions, the Inverse Scattering Transform, homogeneous

balance method, F-expansion method, and Jacobi-elliptic function method [34-38]. Recently

tanh method [36] has been proposed to find the exact solutions to nonlinear evolution equations.
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Later, Fan [37] has proposed an extended tanh-function method and obtained new travelling

wave solution that cannot be obtained by tanh-function method. Most recently, El-Wakil [38]

modified the extended tanh-function method and obtained some new exact solutions. We employ

the modified extended tanh-function (METF) method to solve the equation of motion Eq. (10)

which governs the dynamics of director oscillations with elastic deformations such as splay, twist

and bend. For convenience we substitute ψ = u+iv, and assume ψ(ξ), ξ(x, t) = x − ct in Eq.

(10) and c is the velocity of the travelling wave. Upon separating the real and imaginary parts

of the resultant equation, we obtain the following set of ordinary differential equations

cvξ + uξξ + 2(u3 + v2u) + µuR = 0, (11a)

Rξ + 2(vvξ − uuξ) = 0, (11b)

−cuξ + vξξ + 2(u2v + v3) + µvR = 0, (11c)

4(uξv − uvξ) = 0, (11d)

where, Rξ = −2(vvξ−uuξ)+i4(uξv−uvξ). In order to attempt to solve the above set of equations

we introduce the following ansatz

u(ξ) = a0 +

l
∑

i=1

(aiφ
i + biφ

−i), (12a)

v(ξ) = b0 +
m
∑

j=1

(cjφ
j + djφ

−j), (12b)

R(ξ) = c0 +

n
∑

k=1

(ekφ
k + fkφ

−k), (12c)

dφ

dψ
= b+ φ2, (12d)

where b is the parameter to be determined later. The parameters l,m and n can be found by

inserting Eq. (12) into Eq. (11) and balancing the higher-order linear term with the nonlinear

terms as l = m = 1 and n = 2. Upon substituting Eq. (12) into the ordinary differential

equations Eq. (11), will yield a system of algebraic equations with respect to ai, b, bi, cj , dj , ek

and fk since all the coefficients of φi, φj and φk have to vanish. We are interested to solve the

system of equations for many choices of parameters in the following two different cases.

Case(a)

In this case we choose the set of parameters a1, c1, e1 and e2 vanish in order to satisfy Eq. (12d)

and with the aid of Mathematica, we get a system of algebraic equations for a0, b0, b, b1, c0, d1, f1

and f2

−cd1bφ
−2 − cd1 + 2b1b

2φ−3 + 2b1bφ
−1 + 2a3

0 + 2b31φ
−3 + 6a0b

2
1φ

−2 + 6a2
0b1φ

−1

+2a0b
2
0 + 2b20b1φ

−1 + 2a0d
2
1φ

−2 + 2b1d
2
1φ

−3 + 4a0b0d1φ
−1 + 4b0b1d1φ

−2 + µa0c0

+µa0f1φ
−1 + µa0f2φ

−2 + µc0b1φ
−1 + µb1f1φ

−2 + µb1f2φ
−3 = 0, (13)
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−f1bφ
−2 − f1 − 2f2bφ

−3 − 2f2φ
−1 − 2a0b1bφ

−2 − 2a0b1 − 2b21bφ
−3 − 2b21φ

−1

−2b0d1bφ
−2 − 2b0d1 − 2d2

1bφ
−3 − 2d2

1φ
−1 = 0, (14)

cb1bφ
−2 + cb1 + 2d1b

2φ−3 + 2d1bφ
−1 + 2b30 + 2d3

1φ
−3 + 6b0d

2
1φ

−2 + 6b20d1φ
−1

+2a2
0b0 + 2a2

0d1φ
−1 + 2b0b

2
1φ

−2 + 2b21d1φ
−3 + 4a0b0b1φ

−1 + 4a0b1d1φ
−2

+µb0c0 + µb0f1φ
−1 + µb0f2φ

−2 + µc0d1φ
−1 + µd1f1φ

−2 + µd1f2φ
−3 = 0, (15)

4(−b0b1bφ
−2 − b0b1 + a0d1bφ

−2 + a0d1) = 0. (16)

Further solving the system of equations using symbolic computation, we can distinguish two

types solutions for this case as follows

Solution (i)

We collect the coefficients for different powers of φ and again solving the same we obtain

b = µa2
0 + µb20 − 3a2

0 − 3b20 −
1

2
µc0, (17a)

b1 = −b0(
2a2

0 + 2b20 + µc0

c
), (17b)

d1 = −b20(
2a2

0 + 2b20 + µc0

a0c
), (17c)

f1 = 2b0(
(2a2

0 + 2b20 + µc0)(a
2
0 + b20)

a0c
), (17d)

f2 = −b20(
(2a2

0 + 2b20 + µc0)
2(a2

0 + b20)

a2
0c

2
). (17e)

Also upon using Eqs. (17) into Eqs. (12), we elucidate

ψ(x, t) = a0 +

{

(

−b0(
2a2

0 + 2b20 + µc0

c
)

)

√

µa2
0 + µb20 − 3a2

0 − 3b20 −
1

2
µc0

tan

(

√

µa2
0 + µb20 − 3a2

0 − 3b20 −
1

2
µc0 (x− ct)

)}

+i

[

b0 +

(

−b20(
2a2

0 + 2b20 + µc0

a0c
)

)

√

µa2
0 + µb20 − 3a2

0 − 3b20 −
1

2
µc0

tan

(

√

µa2
0 + µb20 − 3a2

0 − 3b20 −
1

2
µc0 (x− ct)

)]

, (18)
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R(x, t) = c0 +

{

2b0(
(2a2

0 + 2b20 + µc0)(a
2
0 + b20)

a0c
)

√

µa2
0 + µb20 − 3a2

0 − 3b20 −
1

2
µc0

tan

(

√

µa2
0 + µb20 − 3a2

0 − 3b20 −
1

2
µc0 (x− ct)

)}

−

{

b20(
(2a2

0 + 2b20 + µc0)
2(a2

0 + b20)

a2
0c

2
)

√

µa2
0 + µb20 − 3a2

0 − 3b20 −
1

2
µc0

tan

(

√

µa2
0 + µb20 − 3a2

0 − 3b20 −
1

2
µc0 (x− ct)

)}

. (19)

Eqs. (18-19) represent the exact solitary wave solutions in the form of kink excitations for the

dynamical equation governing the director fluctuations due to molecular reorientation in NLC.

In Fig. (2a-2h), we have plotted the solutions ψ(x, t) and R(x, t) represented in Eq. (18,19)

by choosing a0 = 0.001, b0 = 0.01 and c0 = c = 1 for various values of the parameter µ which

physically signifies the role of nonlinear nonlocal term. From the figures, it is evident that any

increment in the degree of nonlocality (µ > 0) enables the kink-like excitation to gradually

change its shape from kink to anti-soliton as depicted in Fig. (2a-2d) and Fig. (2i-2l) from

anti-kink to anti-soliton, a more localized coherent soliton exhibiting shape changing property.

It should be noted from the corresponding contour plots that the excitations due to reorien-

tation nonlinearity are trapped so that it is highly localized and intact. In the contour plots

the brighter region represents the maximum amplitude and the darker region represents the

minimum or zero amplitude of the soliton. A noteworthy characteristic of these solitons is the

way their coherence varies with the nonlocality parameter µ. The properties of nonlocal spatial

incoherent soliton solutions has been investigated in NLC cells and the effect of nonlocality on

the coherence properties of this self-trapped states have been studied in detail. In the case of

coherent nematicons, the optically induced index profile tends to be broader than the soliton

intensity profile depending on the degree of nonlocality thus leading to long range interactions

in NLC systems [39-40]. The effects of nonlocality on coherent solitons, modulational instabil-

ity and soliton interactions have also been investigated for several types of nonlocal response

function [41].
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Solution (ii)

In a similar way, we compute another set of solutions for b, b1, d1, f1, f2 as follows

b = −
1

2
µc0 + µa2

0 + µb20 − 3a2
0 − 3b20, (20a)

b1 =
a2

0c(−µc0 + 2µa2
0 + 2µb20 − 6a2

0 − 6b20)

6b0(−2b20 − 2a2
0 + µa2

0 + µb20)
, (20b)

d1 =
a0c(µc0 + 2µa2

0 + 2µb20 − 6a2
0 − 6b20)

6(−2b20 − 2a2
0 + µa2

0 + µb20)
, (20c)

f1 = −
1

3

a0c(−µc0 + 2µa2
0 + 2µb20 − 6a2

0 − 6b20)

b0(µ− 2)
, (20d)

f2 = −
1

36

a2
0c

2(−µc0 + 2µa2
0 + 2µb20 − 6a2

0 − 6b20)
2

(µ− 2)(−2b20 − 2a2
0 + µa2

0 + µb20)b
2
0

. (20e)

Upon substituting Eqs. (20) in Eqs. (12), the solution takes the following form

ψ(x, t) = a0 +

{

(

a2
0c(−µc0 + 2µa2

0 + 2µb20 − 6a2
0 − 6b20)

6b0(−2b20 − 2a2
0 + µa2

0 + µb20)

)

√

−
1

2
µc0 + µa2

0 + µb20 − 3a2
0 − 3b20

tan

(

√

−
1

2
µc0 + µa2

0 + µb20 − 3a2
0 − 3b20 (x− ct)

)}

+i

[

b0 +

(

a0c(µc0 + 2µa2
0 + 2µb20 − 6a2

0 − 6b20)

6(−2b20 − 2a2
0 + µa2

0 + µb20)

)

√

−
1

2
µc0 + µa2

0 + µb20 − 3a2
0 − 3b20

tan

(

√

−
1

2
µc0 + µa2

0 + µb20 − 3a2
0 − 3b20 (x− ct)

)]

, (21)

R(x, t) = c0 +

{

(

−a0c(−µc0 + 2µa2
0 + 2µb20 − 6a2

0 − 6b20)

3b0(µ− 2)

)

√

−
1

2
µc0 + µa2

0 + µb20 − 3a2
0 − 3b20

tan

(

√

−
1

2
µc0 + µa2

0 + µb20 − 3a2
0 − 3b20 (x− ct)

)}

−

{

(

1

36

a2
0c

2(−µc0 + 2µa2
0 + 2µb20 − 6a2

0 − 6b20)
2

(µ− 2)(−2b20 − 2a2
0 + µa2

0 + µb20)b
2
0

)

√

−
1

2
µc0 + µa2

0 + µb20 − 3a2
0 − 3b20

tan

(

√

−
1

2
µc0 + µa2

0 + µb20 − 3a2
0 − 3b20 (x− ct)

)}

. (22)

The above solitary solutions also exhibit shape changing property. We have plotted Eqs. (21-

22) in Fig. (3a-3h) by choosing the parametric values a0 = b0 = 0.01 and c0 = c = 1 and the
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corresponding contour plots are also depicted. The parameter µ can be considered as a measure

of the nonlocality of this nonlinear medium which is also evident from Fig. (3). As portrayed

in Fig. (3a-3d), for µ = 0.03, the director fluctuations represented in Eq. (21) are governed by

anti-kink soliton and when µ is increased further the localized excitations continuously changing

its shape and when µ = 0.2, it takes the form of a coherent profile of anti-soliton. The shape

changing property is also evident from the contour plots and when µ = 0.2 the diagonal black

region representing the peak of the coherent profile. Similarly, from Fig. (3i-3n) for Eqs.(22),

one can observe that how the molecular reorientational nonlinearity balances with the nonlocal

parameter and settles up in the kink soliton periodic profile when µ = 1.9.

Case(b)

In this case, the parameters b1, d1, f1 and f2 vanishes, on inserting Eq. (12) into Eq. (11) we

get an algebraic set of equations as follows

cc1b+ cc1φ
2 + 2a1bφ

1 + 2a1φ
3 + 2a3

1φ
3 + 2a3

0 + 6a0a
2
1φ

2 + 6a2
0a1φ

1 + 2a0b
2
0

+2a0c
2
1φ

2 + 2a0b0c1φ
1 + 2a1b

2
0φ

1 + 2a1c
2
1φ

3 + 4a1c1b0φ
2 + µa0c0 + µa0e1φ

1

+µa0e2φ
2 + µa1c0φ

1 + µa1e1φ
2 + µa1e2φ

3 = 0, (23)

e1b+ e1φ
2 + 2e2bφ

1 + 2e2φ
3 + 4a0a1bφ

1 + 4a0a1φ
3 + 4a2

1bφ
2 + 4a2

1φ
4 + 4b0c1bφ

1

+4b0c1φ
3 + 4c21bφ

2 + 4c21φ
4 = 0, (24)

−ca1b− ca1φ
2 + 2c1bφ

1 + 2c1φ
3 + 2b30 + 2c31φ

3 + 6b0c
2
1φ

2 + 3b20c1φ
1 + 2a2

0b0 + 2a2
1b0φ

2

+4a0b0a1φ
1 + 2a2

0c1φ
1 + 2a2

1c1φ
3 + 4a0a1c1φ

2 + µb0c0 + µb0e1φ
1 + µb0e2φ

2

+µc0c1φ
1 + µc1e1φ

2 + µe2c1φ
3 = 0, (25)

4(a1b0b+ b0a1φ
2 − a0c1b− a0c1φ

2) = 0. (26)

Solving the system of equations with the aid of Mathematica, we find the two types of solutions

for b, a1, c1, e1 and e2.
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Solution (iii)

We collect the coefficients for different powers of φ and solving the same we obtain

b = −b0(
−6b40 − 12a2

0b
2
0 − µc0b

2
0 + 4µa2

0c0 + µ2c20
−c2b0 + 2cµa3

0 + 2cb20a0µ+ 4b30 + 8b0a2
0 + 2b0c0µ

), (27a)

a1 = −(
−c2b0 + 2cµa3

0 + 2cb20µa0 + 4b30 + 8b0a
2
0 + 2b0c0µ

c(−3b20 + µc0)
), (27b)

c1 = −b0(
−c2b0 + 2cµa3

0 + 2cb20µa0 + 4b30 + 8b0a
2
0 + 2b0c0µ

ca0(−3b20 + µc0)
), (27c)

e1 =
24b50 + 72b30a

2
0 + 12b30c0µ+ 12a2

0b0c0µ− 3c2b30 + 18b20ca
3
0µ− 6a2

0c
2b0

ca0(−3b20 + µc0)

+
6b40a0cµ+ 12a5

0cµ+ 48a4
0b0 − c2b0µc0 + 2cµ2a3

0c0 + 2cb20µ
2a0c0

µca0(−3b20 + µc0)
, (27d)

e2 = 2
(−c2b0 + 2cµa3

0 + 2cb20µa0 + 4b30 + 8b0a
2
0 + 2b0c0µ)(a2

0 + b20)

ca0(−3b20 + µc0)
. (27e)

Also upon using Eqs. (27) into Eq. (12), we elucidate

ψ(x, t) = a0 −

(

−c2b0 + 2cµa3
0 + 2cb20µa0 + 4b30 + 8b0a

2
0 + 2b0c0µ

c(−3b20 + µc0)

)

√

b0
−6b40 − 12a2

0b
2
0 − µc0b

2
0 + 4µa2

0c0 + µ2c20
−c2b0 + 2cµa3

0 + 2cb20a0µ+ 4b30 + 8b0a2
0 + 2b0c0µ

tanh

(
√

b0
−6b40 − 12a2

0b
2
0 − µc0b

2
0 + 4µa2

0c0 + µ2c20
−c2b0 + 2cµa3

0 + 2cb20a0µ+ 4b30 + 8b0a
2
0 + 2b0c0µ

(x− ct)

)

+i

[

b0 −

(

b0
(−c2b0 + 2cµa3

0 + 2cb20µa0 + 4b30 + 8b0a
2
0 + 2b0c0µ)

ca0(−3b20 + µc0)
)

)

√

b0
−6b40 − 12a2

0b
2
0 − µc0b

2
0 + 4µa2

0c0 + µ2c20
−c2b0 + 2cµa3

0 + 2cb20a0µ+ 4b30 + 8b0a
2
0 + 2b0c0µ

tanh

(
√

b0
−6b40 − 12a2

0b
2
0 − µc0b

2
0 + 4µa2

0c0 + µ2c20
−c2b0 + 2cµa3

0 + 2cb20a0µ+ 4b30 + 8b0a2
0 + 2b0c0µ

(x− ct)

)]

,(28)
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R(x, t) = c0 +

(

24b50 + 72b30a
2
0 + 12b30c0µ+ 12a2

0b0c0µ− 3c2b30 + 18b20ca
3
0µ− 6a2

0c
2b0

µca0(−3b20 + µc0)

+
6b40a0cµ+ 12a5

0cµ+ 48a4
0b0 − c2b0µc0 + 2cµ2a3

0c0 + 2cb20µ
2a0c0

µca0(−3b20 + µc0)

)

{

−

√

b0(−6b40 − 12a2
0b

2
0 − µc0b

2
0 + 4µa2

0c0 + µ2c20)

−c2b0 + 2cµa3
0 + 2cb20a0µ+ 4b30 + 8b0a2

0 + 2b0c0µ

tanh

(
√

b0
−6b40 − 12a2

0b
2
0 − µc0b

2
0 + 4µa2

0c0 + µ2c20
−c2b0 + 2cµa3

0 + 2cb20a0µ+ 4b30 + 8b0a2
0 + 2b0c0µ

(x− ct)

)}

−1

+

(

2
(−c2b0 + 2cµa3

0 + 2cb20µa0 + 4b30 + 8b0a
2
0 + 2b0c0µ)(a2

0 + b20)

ca0(−3b20 + µc0)

)

{

−

√

b0(−6b40 − 12a2
0b

2
0 − µc0b

2
0 + 4µa2

0c0 + µ2c20)

−c2b0 + 2cµa3
0 + 2cb20a0µ+ 4b30 + 8b0a2

0 + 2b0c0µ

tanh

(
√

b0(−6b40 − 12a2
0b

2
0 − µc0b

2
0 + 4µa2

0c0 + µ2c20)

−c2b0 + 2cµa3
0 + 2cb20a0µ+ 4b30 + 8b0a2

0 + 2b0c0µ
(x− ct)

)}

−2

.(29)

More interestingly again the solution Eq. (28) exhibits shape changing property for the choices

of parameters a0 = b0 = c0 = 1.1; c = 0.0004. From the plots in Figs.(4a-d), one can infer that

when µ = 0.5, the solution suffers with multiple-periodic line solitonic oscillations. When the

value of the strength of nonlocal term increases much and much further leading to the shape

of anti-soliton at µ = 3.4. A close inspection on the contour plots as presented in Figs.(4e-h)

reveals that the stripes represent the peaks of the soliton and ultimately leading to a single peak

with the higher amplitude tails. In a similar manner, the solution for R(x, t) from Eq.(29) is also

portrayed in Figs. (4i-l) for the choice of a0 = b0 = c = 0.1 and c0 = 0.2 and it is evident that in

this case the shape changing occurs from anti-soliton to anti-kink like director oscillations. From

the contours depicted in Figs. (4m-p), it is clear that the gradient amplitude distribution at

Fig. 4m leads gradually to the exact anti-kink with two distinguished maximum and minimum

amplitude regions as depicted in Fig. 4p. From this study, one can conclude that the nonlocality

arising from the long-range molecular interactions characteristic of NLC media could favour

shape changing molecular deformations. This shape changing molecular deformations has also

been reported by Srivasta et al with a different model of study [42]. Recently, Conti et al. [4] have

presented the theory of spatial solitary waves in nonlocal NL media and reported self-trapping

of light. The same has been predicted in nematic media, where the reorientation nonlinearity

is saturable and nonlocal, it generallly stabilizes self focusing and creation of robust spatial

soltions [43]. In a different context, it has been demonstrated that the spin soliton representing

the dynamics of ferromagnetic spin chain admits shape changing during its evolution. This

shape changing property can be exploited to reverse the magnetization without lost of energy

which may have potential applications in magnetic memory and recording devices [44-45].
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Solution (iv)

In a similar way, we compute another set of solutions for b, a1, c1, e1, e2 as follows

b =
−b0(−2b20 + c0µ)(2b20 + 4a2

0 + µc0)

−c2b0 + 2cµa3
0 + 2cb20µa0 + 4b30 + 8b0a2

0 + 2b0c0µ
, (30a)

a1 = −
−c2b0 + 2cµa3

0 + 2cb20µa0 + 4b30 + 8b0a
2
0 + 2µc0

c(−2b20 + µc0)
, (30b)

c1 = −
b0(−c

2b0 + 2cµa3
0 + 2cb20µa0 + 4b30 + 8b0a

2
0 + 2b0µc0)

c(−2b20 + µc0)a0
, (30c)

e1 =
24b50 + 72b30a

2
0 + 12µc0b0a

2
0 − 6a2

0c
2b0 + 12a5

0cµ+ 20b20ca
3
0µ+ 48a4

0b0 − 4c2b30
a0µc(−2b20 + µc0)

+
8b40ca0µ+ 12b30c0µ− c2b0c0µ+ 2cµ2a3

0c0 + 2cb20µ
2a0c0

a0µc(−2b20 + µc0)
, (30d)

e2 =
2(−c2b0 + 2ca3

0µ+ 2cb20a0µ+ 4b30 + 8b0a
2
0 + 2b0µc0)(a

2
0 + b20)

c(−2b20 + µc0)a0
, (30e)

Upon substituting Eqs. (30) in Eq. (12), the solution takes the following form

ψ(x, t) = a0 +
−c2b0 + 2cµa3

0 + 2cb20µa0 + 4b30 + 8b0a
2
0 + 2µc0

c(−2b20 + µc0)
√

b0(−2b20 + c0µ)(2b20 + 4a2
0 + µc0)

−c2b0 + 2cµa3
0 + 2cb20µa0 + 4b30 + 8b0a2

0 + 2b0c0µ

tanh

(
√

b0(−2b20 + c0µ)(2b20 + 4a2
0 + µc0)

−c2b0 + 2cµa3
0 + 2cb20µa0 + 4b30 + 8b0a

2
0 + 2b0c0µ

(x− ct)

)

+i

[

b0 +

(

b0(−c
2b0 + 2cµa3

0 + 2cb20µa0 + 4b30 + 8b0a
2
0 + 2b0µc0)

ca0(−2b20 + µc0)

)

√

b0(−2b20 + c0µ)(2b20 + 4a2
0 + µc0)

−c2b0 + 2cµa3
0 + 2cb20µa0 + 4b30 + 8b0a

2
0 + 2b0c0µ

tanh

(
√

b0(−2b20 + c0µ)(2b20 + 4a2
0 + µc0)

−c2b0 + 2cµa3
0 + 2cb20µa0 + 4b30 + 8b0a2

0 + 2b0c0µ
(x− ct)

)]

, (31)
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R(x, t) = c0 +

(

24b50 + 72b30a
2
0 + 12µc0b0a

2
0 − 6a2

0c
2b0 + 12a5

0cµ+ 20b20ca
3
0µ+ 48a4

0b0 − 4c2b30
a0µc(−2b20 + µc0)

+
8b40ca0µ+ 12b30c0µ− c2b0c0µ+ 2cµ2a3

0c0 + 2cb20µ
2a0c0

a0µc(−2b20 + µc0)

)

{

−

√

b0(−2b20 + c0µ)(2b20 + 4a2
0 + µc0)

−c2b0 + 2cµa3
0 + 2cb20µa0 + 4b30 + 8b0a2

0 + 2b0c0µ

tanh

(
√

b0(−2b20 + c0µ)(2b20 + 4a2
0 + µc0)

−c2b0 + 2cµa3
0 + 2cb20µa0 + 4b30 + 8b0a2

0 + 2b0c0µ
(x− ct)

)}

−1

+
2(−c2b0 + 2ca3

0µ+ 2cb20a0µ+ 4b30 + 8b0a
2
0 + 2b0µc0)(a

2
0 + b20)

c(−2b20 + µc0)a0
{

−

√

b0(−2b20 + c0µ)(2b20 + 4a2
0 + µc0)

−c2b0 + 2cµa3
0 + 2cb20µa0 + 4b30 + 8b0a

2
0 + 2b0c0µ

tanh

(
√

b0(−2b20 + c0µ)(2b20 + 4a2
0 + µc0)

−c2b0 + 2cµa3
0 + 2cb20µa0 + 4b30 + 8b0a2

0 + 2b0c0µ
(x− ct)

)}

−2

. (32)

In this case, the solution ψ(x, t) as represented in Eq.(30), exhibits unusual breather like director

oscillations which are both temporally and spatially periodic modes as depicted in Figs. (5a-c).

As the value of µ increases the preiodicity becomes large leading to the reduction in the number

of breathing modes can be seen more clearly in the corresponding contour plots. Eventually,

the solution R(x, t) in Eq.(32) is demonstrating the shape changing from antikink to antisoliton

excitations which is not presented here.

4. Conclusions

The exact solitary wave solutions for the nonlocal Nonlinear Schrödinger equations governing

the molecular deformations in NLC have been constructed using symbolic computation. As a

physical relevance, the effect of nonlocal term on the solitary deformation profile leading to the

shape changing property has been studied for different cases. The presented intriguing unifying

shape changing character of the molecular deformations in NLC systems shines new light on

self-localization in liquid crystals and may be exploited for NLC display devices. We believe

that this will stimulate new experiments towards a deeper understanding of self-trapping and

self-localization in highly nonlocal nonlinear NLC media and development of novel all-optical

and switching devices.
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Figure 1: A sketch of the quasi one-dimensional nematic liquid crystal system contained in an
extremely narrow infinite container.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 2: A snapshot of soltion changing shape from kink-anti-soliton (a-d), its contour plots(e-
h) for Eq.(18) and anti-kink to anti-soliton (i-l) and its contour plots (m-p) for Eq. (19).
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

(l) (m) (n)

Figure 3: A snapshot of soltion changing shape from anti-kink to anti-soliton (a-d), its contour
plots(e-h) for Eq.(21) and kink to multi-kink (j-k) and its contour plots (l-n) for Eq. (22).

(a) (b) (c) (d)
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(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 4: A snapshot of soltion changing shape from periodic line solitons to anti-soliton (a-d),
its contour plots(e-h) for Eq.(28) and anti-kink to anti-soliton (i-l) and its contour plots (m-p)
for Eq. (29).
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(a) (b) (c)

(d) (e) (f)

Figure 5: A snapshot of breathing soltion (a-c) and its contour plots(d-f) for Eq.(31)
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