7,181 research outputs found
Quantum fluctuations and glassy behavior: The case of a quantum particle in a random potential
In this paper we expand our previous investigation of a quantum particle
subject to the action of a random potential plus a fixed harmonic potential at
a finite temperature T. In the classical limit the system reduces to a
well-known ``toy'' model for an interface in a random medium. It also applies
to a single quantum particle like an an electron subject to random
interactions, where the harmonic potential can be tuned to mimic the effect of
a finite box. Using the variational approximation, or alternatively, the limit
of large spatial dimensions, together with the use the replica method, and are
able to solve the model and obtain its phase diagram in the
plane, where is the particle's mass. The phase diagram is similar to that
of a quantum spin-glass in a transverse field, where the variable
plays the role of the transverse field. The glassy phase is characterized by
replica-symmetry-breaking. The quantum transition at zero temperature is also
discussed.Comment: revised version, 23 pages, revtex, 5 postscript figures in a separate
file figures.u
Replica field theory for a polymer in random media
In this paper we revisit the problem of a (non self-avoiding) polymer chain
in a random medium which was previously investigated by Edwards and Muthukumar
(EM). As noticed by Cates and Ball (CB) there is a discrepancy between the
predictions of the replica calculation of EM and the expectation that in an
infinite medium the quenched and annealed results should coincide (for a chain
that is free to move) and a long polymer should always collapse. CB argued that
only in a finite volume one might see a ``localization transition'' (or
crossover) from a stretched to a collapsed chain in three spatial dimensions.
Here we carry out the replica calculation in the presence of an additional
confining harmonic potential that mimics the effect of a finite volume. Using a
variational scheme with five variational parameters we derive analytically for
d<4 the result R~(g |ln \mu|)^{-1/(4-d)} ~(g lnV)^{-1/(4-d)}, where R is the
radius of gyration, g is the strength of the disorder, \mu is the spring
constant associated with the confining potential and V is the associated
effective volume of the system. Thus the EM result is recovered with their
constant replaced by ln(V) as argued by CB. We see that in the strict infinite
volume limit the polymer always collapses, but for finite volume a transition
from a stretched to a collapsed form might be observed as a function of the
strength of the disorder. For d<2 and for large
V>V'~exp[g^(2/(2-d))L^((4-d)/(2-d))] the annealed results are recovered and
R~(Lg)^(1/(d-2)), where L is the length of the polymer. Hence the polymer also
collapses in the large L limit. The 1-step replica symmetry breaking solution
is crucial for obtaining the above results.Comment: Revtex, 32 page
The Stellar Populations and Evolution of Lyman Break Galaxies
Using deep near-IR and optical observations of the HDF-N from the HST NICMOS
and WFPC2 and from the ground, we examine the spectral energy distributions
(SEDs) of Lyman break galaxies (LBGs) at 2.0 < z < 3.5. The UV-to-optical
rest-frame SEDs of the galaxies are much bluer than those of present-day spiral
and elliptical galaxies, and are generally similar to those of local starburst
galaxies with modest amounts of reddening. We use stellar population synthesis
models to study the properties of the stars that dominate the light from LBGs.
Under the assumption that the star-formation rate is continuous or decreasing
with time, the best-fitting models provide a lower bound on the LBG mass
estimates. LBGs with ``L*'' UV luminosities are estimated to have minimum
stellar masses ~ 10^10 solar masses, or roughly 1/10th that of a present-day L*
galaxy. By considering the effects of a second component of maximally-old
stars, we set an upper bound on the stellar masses that is ~ 3-8 times the
minimum estimate. We find only loose constraints on the individual galaxy ages,
extinction, metallicities, initial mass functions, and prior star-formation
histories. We find no galaxies whose SEDs are consistent with young (< 10^8
yr), dust-free objects, which suggests that LBGs are not dominated by ``first
generation'' stars, and that such objects are rare at these redshifts. We also
find that the typical ages for the observed star-formation events are
significantly younger than the time interval covered by this redshift range (~
1.5 Gyr). From this, and from the relative absence of candidates for quiescent,
non-star-forming galaxies at these redshifts in the NICMOS data, we suggest
that star formation in LBGs may be recurrent, with short duty cycles and a
timescale between star-formation events of < 1 Gyr. [Abridged]Comment: LaTeX, 37 pages, 21 figures. Accepted for publication in the
Astrophysical Journa
Disorder effects in the quantum Heisenberg model: An Extended Dynamical mean-field theory analysis
We investigate a quantum Heisenberg model with both antiferromagnetic and
disordered nearest-neighbor couplings. We use an extended dynamical mean-field
approach, which reduces the lattice problem to a self-consistent local impurity
problem that we solve by using a quantum Monte Carlo algorithm. We consider
both two- and three-dimensional antiferromagnetic spin fluctuations and
systematically analyze the effect of disorder. We find that in three dimensions
for any small amount of disorder a spin-glass phase is realized. In two
dimensions, while clean systems display the properties of a highly correlated
spin-liquid (where the local spin susceptibility has a non-integer power-low
frequency and/or temperature dependence), in the present case this behavior is
more elusive unless disorder is very small. This is because the spin-glass
transition temperature leaves only an intermediate temperature regime where the
system can display the spin-liquid behavior, which turns out to be more
apparent in the static than in the dynamical susceptibility.Comment: 15 pages, 7 figure
Magnetism and local distortions near carbon impurity in -iron
Local perturbations of crystal and magnetic structure of -iron near
carbon interstitial impurity is investigated by {\it ab initio} electronic
structure calculations. It is shown that the carbon impurity creates locally a
region of ferromagnetic ordering with substantial tetragonal distortions.
Exchange integrals and solution enthalpy are calculated, the latter being in a
very good agreement with experimental data. Effect of the local distortions on
the carbon-carbon interactions in -iron is discussed.Comment: 4 pages 3 figures. Final version, accepted to Phys.Rev. Let
The Baldwin Effect and Black Hole Accretion: A Spectral Principal Component Analysis of a Complete QSO Sample
A unique set of UV-optical spectrograms of 22 low redshift QSOs are
investigated using principal component analysis. We find three significant
principal components over the broad wavelength range from Ly\alpha to H\alpha.
They together account for about 78% of the sample intrinsic variance. We
present strong arguments that the first principal component represents the
Baldwin effect, relating equivalent widths to the luminosity (i.e. accretion
rate), but only emission-line cores are involved. The second component
represents continuum variations, probably dominated by intrinsic reddening. The
third principal component directly relates QSO UV properties to the optical
principal component 1 found by Boroson & Green (1992). It is the primary cause
of scatter in the Baldwin relationships. It is also directly related to broad
emission-line width and soft X-ray spectral index, and therefore probably
driven by Eddington accretion ratio. We demonstrate how Baldwin relationships
can be derived using our first principal component, virtually eliminating the
scatter caused by the third principal component. This rekindles the hope that
the Baldwin relationships can be used for cosmological study.Comment: 35 pages, 13 figures, AASTEX, accepted for publication in Ap
Crystal surfaces with correlated disorder: Phase transitions between roughening and superroughening
A theory for surface transitions in the presence of a disordered pinning
potential is presented. Arbitrary disorder correlations are treated in the
framework of a dynamical functional renormalization group. The roughening
transition, where surface roughness and mobility behave discontinuously, is
shown to turn smoothly into the continuous superroughening transition, when the
range of disorder correlations is decreased. Implications for random-field
-models and vortex glasses are discussed.Comment: 13 pages with 2 figures, latex+revte
Particle production and equilibrium properties within a new hadron transport approach for heavy-ion collisions
The microscopic description of heavy-ion reactions at low beam energies is
achieved within hadronic transport approaches. In this article a new approach
SMASH (Simulating Many Accelerated Strongly-interacting Hadrons) is introduced
and applied to study the production of non-strange particles in heavy-ion
reactions at GeV. First, the model is described including
details about the collision criterion, the initial conditions and the resonance
formation and decays. To validate the approach, equilibrium properties such as
detailed balance are presented and the results are compared to experimental
data for elementary cross sections. Finally results for pion and proton
production in C+C and Au+Au collisions is confronted with HADES and FOPI data.
Predictions for particle production in collisions are made.Comment: 30 pages, 30 figures, replaced with published version; only minor
change
- …
