57 research outputs found

    Perceived Sound Quality Dimensions Influencing Frequency-Gain Shaping Preferences for Hearing Aid-Amplified Speech and Music

    Get PDF
    © The Author(s) 2021. Hearing aids are typically fitted using speech-based prescriptive formulae to make speech more intelligible. Individual preferences may vary from these prescriptions and may also vary with signal type. It is important to consider what motivates listener preferences and how those preferences can inform hearing aid processing so that assistive listening devices can best be tailored for hearing aid users. Therefore, this study explored preferred frequency-gain shaping relative to prescribed gain for speech and music samples. Preferred gain was determined for 22 listeners with mild sloping to moderately severe hearing loss relative to individually prescribed amplification while listening to samples of male speech, female speech, pop music, and classical music across low-, mid-, and high-frequency bands. Samples were amplified using a fast-acting compression hearing aid simulator. Preferences were determined using an adaptive paired comparison procedure. Listeners then rated speech and music samples processed using prescribed and preferred shaping across different sound quality descriptors. On average, low-frequency gain was significantly increased relative to the prescription for all stimuli and most substantially for pop and classical music. High-frequency gain was decreased significantly for pop music and male speech. Gain adjustments, particularly in the mid- and high-frequency bands, varied considerably between listeners. Music preferences were driven by changes in perceived fullness and sharpness, whereas speech preferences were driven by changes in perceived intelligibility and loudness. The results generally support the use of prescribed amplification to optimize speech intelligibility and alternative amplification for music listening for most listeners

    A Technical Comparison of Digital Frequency-Lowering Algorithms Available in Two Current Hearing Aids

    Get PDF
    Background: Recently two major manufacturers of hearing aids introduced two distinct frequency-lowering techniques that were designed to compensate in part for the perceptual effects of high-frequency hearing impairments. The Widex ‘‘Audibility Extender’ ’ is a linear frequency transposition scheme, whereas the Phonak ‘‘SoundRecover’ ’ scheme employs nonlinear frequency compression. Although these schemes process sound signals in very different ways, studies investigating their use by both adults and children with hearing impairment have reported significant perceptual benefits. However, the modifications that these innovative schemes apply to sound signals have not previously been described or compared in detail. Methods: The main aim of the present study was to analyze these schemes’technical performance by measuring outputs from each type of hearing aid with the frequency-lowering functions enabled and disabled. The input signals included sinusoids, flute sounds, and speech material. Spectral analyses were carried out on the output signals produced by the hearing aids in each condition. Conclusions: The results of the analyses confirmed that each scheme was effective at lowering certain high-frequency acoustic signals, although both techniques also distorted some signals. Most importantly, the application of either frequency-lowering scheme would be expected to improve the audibility of many sounds having salient high-frequenc

    Assessment of management to mitigate anthropogenic effects on large whales

    Get PDF
    Author Posting. © Society for Conservation Biology, 2012. This article is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in Conservation Biology 27 (2013): 121-133, doi:10.1111/j.1523-1739.2012.01934.x.United States and Canadian governments have responded to legal requirements to reduce human-induced whale mortality via vessel strikes and entanglement in fishing gear by implementing a suite of regulatory actions. We analyzed the spatial and temporal patterns of mortality of large whales in the Northwest Atlantic (23.5°N to 48.0°N), 1970 through 2009, in the context of management changes. We used a multinomial logistic model fitted by maximum likelihood to detect trends in cause-specific mortalities with time. We compared the number of human-caused mortalities with U.S. federally established levels of potential biological removal (i.e., species-specific sustainable human-caused mortality). From 1970 through 2009, 1762 mortalities (all known) and serious injuries (likely fatal) involved 8 species of large whales. We determined cause of death for 43% of all mortalities; of those, 67% (502) resulted from human interactions. Entanglement in fishing gear was the primary cause of death across all species (n= 323), followed by natural causes (n= 248) and vessel strikes (n= 171). Established sustainable levels of mortality were consistently exceeded in 2 species by up to 650%. Probabilities of entanglement and vessel-strike mortality increased significantly from 1990 through 2009. There was no significant change in the local intensity of all or vessel-strike mortalities before and after 2003, the year after which numerous mitigation efforts were enacted. So far, regulatory efforts have not reduced the lethal effects of human activities to large whales on a population-range basis, although we do not exclude the possibility of success of targeted measures for specific local habitats that were not within the resolution of our analyses. It is unclear how shortfalls in management design or compliance relate to our findings. Analyses such as the one we conducted are crucial in critically evaluating wildlife-management decisions. The results of these analyses can provide managers with direction for modifying regulated measures and can be applied globally to mortality-driven conservation issues.We thank S. and H. Simmons for funding for this project

    Inter-individual variability of stone marten behavioral responses to a highway

    Get PDF
    Efforts to reduce the negative impacts of roads on wildlife may be hindered if individuals within the population vary widely in their responses to roads and mitigation strategies ignore this variability. This knowledge is particularly important for medium-sized carnivores as they are vulnerable to road mortality, while also known to use available road passages (e.g., drainage culverts) for safely crossing highways. Our goal in this study was to assess whether this apparently contradictory pattern of high road-kill numbers associated with a regular use of road passages is attributable to the variation in behavioral responses toward the highway between individuals. We investigated the responses of seven radio-tracked stone martens (Martes foina) to a highway by measuring their utilization distribution, response turning angles and highway crossing patterns. We compared the observed responses to simulated movement parameterized by the observed space use and movement characteristics of each individual, but naı¨ve to the presence of the highway. Our results suggested that martens demonstrate a diversity of responses to the highway, including attraction, indifference, or avoidance. Martens also varied in their highway crossing patterns, with some crossing repeatedly at the same location (often coincident with highway passages). We suspect that the response variability derives from the individual’s familiarity of the landscape, including their awareness of highway passage locations. Because of these variable yet potentially attributable responses, we support the use of exclusionary fencing to guide transient (e.g., dispersers) individuals to existing passages to reduce the road-kill risk

    The effect of adaptive nonlinear frequency compression on phoneme perception

    No full text
    © 2017 American Speech-Language-Hearing Association. Purpose: This study implemented a fitting method, developed for use with frequency lowering hearing aids, across multiple testing sites, participants, and hearing aid conditions to evaluate speech perception with a novel type of frequency lowering. Method: A total of 8 participants, including children and young adults, participated in real-world hearing aid trials. A blinded crossover design, including posttrial withdrawal testing, was used to assess aided phoneme perception. The hearing aid conditions included adaptive nonlinear frequency compression (NFC), static NFC, and conventional processing. Results: Enabling either adaptive NFC or static NFC improved group-level detection and recognition results for some high-frequency phonemes, when compared with conventional processing. Mean results for the distinction component of the Phoneme Perception Test (Schmitt, Winkler, Boretzki, & Holube, 2016) were similar to those obtained with conventional processing. Conclusions: Findings suggest that both types of NFC tested in this study provided a similar amount of speech perception benefit, when compared with group-level performance with conventional hearing aid technology. Individual-level results are presented with discussion around patterns of results that differ from the group average

    The effect of stimulus choice on cortical auditory evoked potentials (CAEP): Consideration of speech segment positioning within naturally produced speech

    No full text
    Objective: Cortical auditory evoked potentials (CAEPs) can be elicited to stimuli generated from different parts of speech. The aim of this study was to compare the phoneme/s/from word medial and word initial positions and its influence on the CAEP. Design: Stimuli from word medial positions were found to have shorter rise times compared to the same phonemes from word initial positions. A repeated measures design was carried out with CAEPs elicited using/s/from a word initial and a word medial position. Study sample: Sixteen individuals with audiometric thresholds within normal limits participated in the study. Results: Stimuli/s/from a word medial position elicited CAEPs with significantly larger amplitudes and shorter latencies compared to/s/from a word initial position (p \u3c 0.05). Conclusions: Findings from this study, incorporating naturally produced speech sounds, suggest the need to consider spectral and temporal variations when choosing stimuli to optimize the amplitude and latency characteristics of the CAEP. Overall, findings illustrate good test-retest reliability of CAEP measures using speech stimuli with clinical equipment. © 2012 British Society of Audiology, International Society of Audiology, and Nordic Audiological Society
    corecore