32 research outputs found

    Aberrantly Expressed Hsa_circ_0060762 and CSE1L as Potential Peripheral Blood Biomarkers for ALS

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a rapidly progressive adult-onset neurodegenerative disease that is often diagnosed with a delay due to initial non-specific symptoms. Therefore, reliable and easy-to-obtain biomarkers are an absolute necessity for earlier and more accurate diagnostics. Circular RNAs (circRNAs) have already been proposed as potential biomarkers for several neurodegenerative diseases. In this study, we further investigated the usefulness of circRNAs as potential biomarkers for ALS. We first performed a microarray analysis of circRNAs on peripheral blood mononuclear cells of a subset of ALS patients and controls. Among the differently expressed circRNA by microarray analysis, we selected only the ones with a host gene that harbors the highest level of conservation and genetic constraints. This selection was based on the hypothesis that genes under selective pressure and genetic constraints could have a major role in determining a trait or disease. Then we performed a linear regression between ALS cases and controls using each circRNA as a predictor variable. With a False Discovery Rate (FDR) threshold of 0.1, only six circRNAs passed the filtering and only one of them remained statistically significant after Bonferroni correction: hsa_circ_0060762 and its host gene CSE1L. Finally, we observed a significant difference in expression levels between larger sets of patients and healthy controls for both hsa_circ_0060762 and CSE1L. CSE1L is a member of the importin fi family and mediates inhibition of TDP-43 aggregation; the central pathogenicity in ALS and hsa_circ_0060762 has binding sites for several miRNAs that have been already proposed as biomarkers for ALS. In addition, receiver operating characteristics curve analysis showed diagnostic potential for CSE1L and hsa_circ_0060762. Hsa_circ_0060762 and CSE1L thus represent novel potential peripheral blood biomarkers and therapeutic targets for ALS

    Slovenska validacija Inventara sposobnosti za ljubav – preliminarno istraživanje

    Get PDF
    Our study aimed to test the psychometric properties of the Slovenian version of the Capacity to Love Inventory (CTL-I, Kapusta et al., 2018). The CTL-I is a 41-item self-report questionnaire that measures the construct of capacity to love. The measure itself has been operationalized based on findings from clinical practice and psychodynamic theory and relates to both clinically relevant symptoms as well as healthier manifestations of personality. The CTL-I measures six dimensions:interest in the life project of the other, basic trust, gratitude, common ego ideal, permanence of sexual passion and loss and mourning. Due to the concept of capacity to love being closely related to relationship quality, we used the Quality of Relationship Inventory (QRI) to examine external validity. Our final study sample consisted of 224 non-clinical adults. Overall, the Slovenian version of the CTL-I showed a satisfactory model fit, comparable to that of previous validation studies. The QRI subscales were found to correlate with most of the CTL-I factors, as well as the CTL-I subscales with each other. Because of the instrument being tested on a smaller convenience sample in this study, we believe our findings should be viewed as a preliminary attempt at validating the Slovenian translation of the CTL-I. While the results of the present study are promising, we believe additional research is needed to fully assess the psychometric properties of the Slovenian CTL-I.Cilj je ovoga istraživanja bio ispitati psihometrijske karakteristike slovenske verzije Inventara sposobnosti za ljubav (CTL-I; Kapusta i sur., 2018). CTL-I je upitnik za samoprocjenu od 41 čestice koji mjeri konstrukt sposobnosti za ljubav. Sama je mjera operacionalizirana na temelju istraživanja u kliničkoj praksi i psihodinamskoj teoriji, a odnosi se na klinički relevantne simptome, kao i na zdravije manifestacije ličnosti. CTL-I mjeri šest dimenzija: zanimanje za životni plan drugoga, osnovno povjerenje, zahvalnost, zajednički ego ideal, postojanost seksualne strasti te gubitak I žalost. Budući da je poznato da je koncept sposobnosti za ljubav usko povezan s kvalitetom veze, koristili smo Inventar kvalitete odnosa (QRI) za ispitivanje vanjske valjanosti. Konačni se uzorak ispitanika sastojao od 224 nekliničke odrasle osobe. Slovenska verzija CTL-I-ja pokazala je zadovoljavajuće pristajanje modela usporedivo s onim u prethodnim validacijskim studijama. Supskale QRI-ja koreliraju s većinom faktora CTL-I-ja, kao i supskale CTL-I-ja jedna s drugom. Budući da je instrument u ovome istraživanju testiran na manjemu prigodnom uzorku, vjerujemo da bi dobivene nalaze trebalo promatrati kao preliminarni pokušaj validacije slovenskoga prijevoda CTL-I-ja. Iako su rezultati ove studije obećavajući, potrebna su daljnja istraživanja da bi se u potpunosti procijenila psihometrijska svojstva slovenskoga prijevoda CTL-I-ja

    Presence of activating KRAS mutations correlates significantly with expression of tumour suppressor genes DCN and TPM1 in colorectal cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite identification of the major genes and pathways involved in the development of colorectal cancer (CRC), it has become obvious that several steps in these pathways might be bypassed by other as yet unknown genetic events that lead towards CRC. Therefore we wanted to improve our understanding of the genetic mechanisms of CRC development.</p> <p>Methods</p> <p>We used microarrays to identify novel genes involved in the development of CRC. Real time PCR was used for mRNA expression as well as to search for chromosomal abnormalities within candidate genes. The correlation between the expression obtained by real time PCR and the presence of the <it>KRAS </it>mutation was investigated.</p> <p>Results</p> <p>We detected significant previously undescribed underexpression in CRC for genes <it>SLC26A3</it>, <it>TPM1 </it>and <it>DCN</it>, with a suggested tumour suppressor role. We also describe the correlation between <it>TPM1 </it>and <it>DCN </it>expression and the presence of <it>KRAS </it>mutations in CRC. When searching for chromosomal abnormalities, we found deletion of the <it>TPM1 </it>gene in one case of CRC, but no deletions of <it>DCN </it>and <it>SLC26A3 </it>were found.</p> <p>Conclusion</p> <p>Our study provides further evidence of decreased mRNA expression of three important tumour suppressor genes in cases of CRC, thus implicating them in the development of this type of cancer. Moreover, we found underexpression of the <it>TPM1 </it>gene in a case of CRCs without <it>KRAS </it>mutations, showing that <it>TPM1 </it>might serve as an alternative path of development of CRC. This downregulation could in some cases be mediated by deletion of the <it>TPM1 </it>gene. On the other hand, the correlation of <it>DCN </it>underexpression with the presence of <it>KRAS </it>mutations suggests that <it>DCN </it>expression is affected by the presence of activating <it>KRAS </it>mutations, lowering the amount of the important tumour suppressor protein decorin.</p

    Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a lifetime risk of one in 350 people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry genome-wide association study (GWAS) including 29,612 patients with ALS and 122,656 controls, which identified 15 risk loci. When combined with 8,953 individuals with whole-genome sequencing (6,538 patients, 2,415 controls) and a large cortex-derived expression quantitative trait locus (eQTL) dataset (MetaBrain), analyses revealed locus-specific genetic architectures in which we prioritized genes either through rare variants, short tandem repeats or regulatory effects. ALS-associated risk loci were shared with multiple traits within the neurodegenerative spectrum but with distinct enrichment patterns across brain regions and cell types. Of the environmental and lifestyle risk factors obtained from the literature, Mendelian randomization analyses indicated a causal role for high cholesterol levels. The combination of all ALS-associated signals reveals a role for perturbations in vesicle-mediated transport and autophagy and provides evidence for cell-autonomous disease initiation in glutamatergic neurons

    Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a lifetime risk of one in 350 people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry genome-wide association study (GWAS) including 29,612 patients with ALS and 122,656 controls, which identified 15 risk loci. When combined with 8,953 individuals with whole-genome sequencing (6,538 patients, 2,415 controls) and a large cortex-derived expression quantitative trait locus (eQTL) dataset (MetaBrain), analyses revealed locus-specific genetic architectures in which we prioritized genes either through rare variants, short tandem repeats or regulatory effects. ALS-associated risk loci were shared with multiple traits within the neurodegenerative spectrum but with distinct enrichment patterns across brain regions and cell types. Of the environmental and lifestyle risk factors obtained from the literature, Mendelian randomization analyses indicated a causal role for high cholesterol levels. The combination of all ALS-associated signals reveals a role for perturbations in vesicle-mediated transport and autophagy and provides evidence for cell-autonomous disease initiation in glutamatergic neurons. A cross-ancestry genome-wide association meta-analysis of amyotrophic lateral sclerosis (ALS) including 29,612 patients with ALS and 122,656 controls identifies 15 risk loci with distinct genetic architectures and neuron-specific biology

    Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a lifetime risk of one in 350 people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry genome-wide association study (GWAS) including 29,612 patients with ALS and 122,656 controls, which identified 15 risk loci. When combined with 8,953 individuals with whole-genome sequencing (6,538 patients, 2,415 controls) and a large cortex-derived expression quantitative trait locus (eQTL) dataset (MetaBrain), analyses revealed locus-specific genetic architectures in which we prioritized genes either through rare variants, short tandem repeats or regulatory effects. ALS-associated risk loci were shared with multiple traits within the neurodegenerative spectrum but with distinct enrichment patterns across brain regions and cell types. Of the environmental and lifestyle risk factors obtained from the literature, Mendelian randomization analyses indicated a causal role for high cholesterol levels. The combination of all ALS-associated signals reveals a role for perturbations in vesicle-mediated transport and autophagy and provides evidence for cell-autonomous disease initiation in glutamatergic neurons. A cross-ancestry genome-wide association meta-analysis of amyotrophic lateral sclerosis (ALS) including 29,612 patients with ALS and 122,656 controls identifies 15 risk loci with distinct genetic architectures and neuron-specific biology

    Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology

    Get PDF
    A cross-ancestry genome-wide association meta-analysis of amyotrophic lateral sclerosis (ALS) including 29,612 patients with ALS and 122,656 controls identifies 15 risk loci with distinct genetic architectures and neuron-specific biology. Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a lifetime risk of one in 350 people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry genome-wide association study (GWAS) including 29,612 patients with ALS and 122,656 controls, which identified 15 risk loci. When combined with 8,953 individuals with whole-genome sequencing (6,538 patients, 2,415 controls) and a large cortex-derived expression quantitative trait locus (eQTL) dataset (MetaBrain), analyses revealed locus-specific genetic architectures in which we prioritized genes either through rare variants, short tandem repeats or regulatory effects. ALS-associated risk loci were shared with multiple traits within the neurodegenerative spectrum but with distinct enrichment patterns across brain regions and cell types. Of the environmental and lifestyle risk factors obtained from the literature, Mendelian randomization analyses indicated a causal role for high cholesterol levels. The combination of all ALS-associated signals reveals a role for perturbations in vesicle-mediated transport and autophagy and provides evidence for cell-autonomous disease initiation in glutamatergic neurons

    Analysis of shared common genetic risk between amyotrophic lateral sclerosis and epilepsy

    Get PDF
    Because hyper-excitability has been shown to be a shared pathophysiological mechanism, we used the latest and largest genome-wide studies in amyotrophic lateral sclerosis (n = 36,052) and epilepsy (n = 38,349) to determine genetic overlap between these conditions. First, we showed no significant genetic correlation, also when binned on minor allele frequency. Second, we confirmed the absence of polygenic overlap using genomic risk score analysis. Finally, we did not identify pleiotropic variants in meta-analyses of the 2 diseases. Our findings indicate that amyotrophic lateral sclerosis and epilepsy do not share common genetic risk, showing that hyper-excitability in both disorders has distinct origins

    Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a lifetime risk of one in 350 people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry genome-wide association study (GWAS) including 29,612 patients with ALS and 122,656 controls, which identified 15 risk loci. When combined with 8,953 individuals with whole-genome sequencing (6,538 patients, 2,415 controls) and a large cortex-derived expression quantitative trait locus (eQTL) dataset (MetaBrain), analyses revealed locus-specific genetic architectures in which we prioritized genes either through rare variants, short tandem repeats or regulatory effects. ALS-associated risk loci were shared with multiple traits within the neurodegenerative spectrum but with distinct enrichment patterns across brain regions and cell types. Of the environmental and lifestyle risk factors obtained from the literature, Mendelian randomization analyses indicated a causal role for high cholesterol levels. The combination of all ALS-associated signals reveals a role for perturbations in vesicle-mediated transport and autophagy and provides evidence for cell-autonomous disease initiation in glutamatergic neurons

    Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a lifetime risk of one in 350 people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry genome-wide association study (GWAS) including 29,612 patients with ALS and 122,656 controls, which identified 15 risk loci. When combined with 8,953 individuals with whole-genome sequencing (6,538 patients, 2,415 controls) and a large cortex-derived expression quantitative trait locus (eQTL) dataset (MetaBrain), analyses revealed locus-specific genetic architectures in which we prioritized genes either through rare variants, short tandem repeats or regulatory effects. ALS-associated risk loci were shared with multiple traits within the neurodegenerative spectrum but with distinct enrichment patterns across brain regions and cell types. Of the environmental and lifestyle risk factors obtained from the literature, Mendelian randomization analyses indicated a causal role for high cholesterol levels. The combination of all ALS-associated signals reveals a role for perturbations in vesicle-mediated transport and autophagy and provides evidence for cell-autonomous disease initiation in glutamatergic neurons.peer-reviewe
    corecore