2,119 research outputs found
Temperature regulation circuit Patent
Device for rapid adjustment and maintenance of temperature in electronic component
Pattern Formation on Trees
Networks having the geometry and the connectivity of trees are considered as
the spatial support of spatiotemporal dynamical processes. A tree is
characterized by two parameters: its ramification and its depth. The local
dynamics at the nodes of a tree is described by a nonlinear map, given rise to
a coupled map lattice system. The coupling is expressed by a matrix whose
eigenvectors constitute a basis on which spatial patterns on trees can be
expressed by linear combination. The spectrum of eigenvalues of the coupling
matrix exhibit a nonuniform distribution which manifest itself in the
bifurcation structure of the spatially synchronized modes. These models may
describe reaction-diffusion processes and several other phenomena occurring on
heterogeneous media with hierarchical structure.Comment: Submitted to Phys. Rev. E, 15 pages, 9 fig
The acoustics of public square/places: a comparison between results from a computer simulation program and measurements in situ
http://www.odeon.dk/pdf/InterNoise2004.pd
Quadrupole collectivity beyond N=28: Intermediate-energy Coulomb excitation of 47,48Ar
We report on the first experimental study of quadrupole collectivity in the
very neutron-rich nuclei \nuc{47,48}{Ar} using intermediate-energy Coulomb
excitation. These nuclei are located along the path from doubly-magic Ca to
collective S and Si isotopes, a critical region of shell evolution and
structural change. The deduced transition strengths are confronted with
large-scale shell-model calculations in the shell using the
state-of-the-art SDPF-U and EPQQM effective interactions. The comparison
between experiment and theory indicates that a shell-model description of Ar
isotopes around N=28 remains a challenge.Comment: Accepted for publication in Physical Review Letters, typos fixed in
resubmission on April 1
Is the structure of 42Si understood?
A more detailed test of the implementation of nuclear forces that drive shell
evolution in the pivotal nucleus \nuc{42}{Si} -- going beyond earlier
comparisons of excited-state energies -- is important. The two leading
shell-model effective interactions, SDPF-MU and SDPF-U-Si, both of which
reproduce the low-lying \nuc{42}{Si}() energy, but whose predictions for
other observables differ significantly, are interrogated by the population of
states in neutron-rich \nuc{42}{Si} with a one-proton removal reaction from
\nuc{43}{P} projectiles at 81~MeV/nucleon. The measured cross sections to the
individual \nuc{42}{Si} final states are compared to calculations that combine
eikonal reaction dynamics with these shell-model nuclear structure overlaps.
The differences in the two shell-model descriptions are examined and linked to
predicted low-lying excited states and shape coexistence. Based on the
present data, which are in better agreement with the SDPF-MU calculations, the
state observed at 2150(13)~keV in \nuc{42}{Si} is proposed to be the ()
level.Comment: accepted in Physical Review Letter
Accuracy of B(E2; 0+ -> 2+) transition rates from intermediate-energy Coulomb excitation experiments
The method of intermediate-energy Coulomb excitation has been widely used to
determine absolute B(E2; 0+ -> 2+) quadrupole excitation strengths in exotic
nuclei with even numbers of protons and neutrons. Transition rates measured
with intermediate-energy Coulomb excitation are compared to their respective
adopted values and for the example of 26Mg to the B(E2; 0+ -> 2+) values
obtained with a variety of standard methods. Intermediate-energy Coulomb
excitation is found to have an accuracy comparable to those of long-established
experimental techniques.Comment: to be published in Phys. Rev.
Quadrupole collectivity in neutron-deficient Sn nuclei: \nuc{104}{Sn} and the role of proton excitations
We report on the experimental study of quadrupole collectivity in the
neutron-deficient nucleus \nuc{104}{Sn} using intermediate-energy Coulomb
excitation. The value for the excitation of
the first state in \nuc{104}{Sn} has been measured to be
b relative to the well-known value of \nuc{102}{Cd}.
This result disagrees by more than one sigma with a recently published
measurement \cite{Gua13}. Our result indicates that the most modern many-body
calculations remain unable to describe the enhanced collectivity below
mid-shell in Sn approaching . We attribute the enhanced collectivity to
proton particle-hole configurations beyond the necessarily limited shell-model
spaces and suggest the asymmetry of the -value trend around mid-shell to
originate from enhanced proton excitations across as is
approached.Comment: Accepted for publication as rapid communication in Physical Review
Spectroscopy of P using the one-proton knockout reaction
The structure of P was studied with a one-proton knockout reaction
at88~MeV/u from a S projectile beam at NSCL. The rays from
thedepopulation of excited states in P were detected with GRETINA,
whilethe P nuclei were identified event-by-event in the focal plane of
theS800 spectrograph. The level scheme of P was deduced up to 7.5 MeV
using coincidences. The observed levels were attributed to
protonremovals from the -shell and also from the deeply-bound
orbital.The orbital angular momentum of each state was derived from the
comparisonbetween experimental and calculated shapes of individual
(-gated)parallel momentum distributions. Despite the use of different
reactions andtheir associate models, spectroscopic factors, , derived
from theS knockout reaction agree with those obtained earlier
fromS(,\nuc{3}{He}) transfer, if a reduction factor , as
deducedfrom inclusive one-nucleon removal cross sections, is applied to the
knockout transitions.In addition to the expected proton-hole configurations,
other states were observedwith individual cross sections of the order of
0.5~mb. Based on their shiftedparallel momentum distributions, their decay
modes to negative parity states,their high excitation energy (around 4.7~MeV)
and the fact that they were notobserved in the (,\nuc{3}{He}) reaction, we
propose that they may resultfrom a two-step mechanism or a nucleon-exchange
reaction with subsequent neutronevaporation. Regardless of the mechanism, that
could not yet be clarified, thesestates likely correspond to neutron core
excitations in \nuc{35}{P}. Thisnewly-identified pathway, although weak, offers
the possibility to selectivelypopulate certain intruder configurations that are
otherwise hard to produceand identify.Comment: 5 figures, 1 table, accepted for publication in Physical Review
- …
