Networks having the geometry and the connectivity of trees are considered as
the spatial support of spatiotemporal dynamical processes. A tree is
characterized by two parameters: its ramification and its depth. The local
dynamics at the nodes of a tree is described by a nonlinear map, given rise to
a coupled map lattice system. The coupling is expressed by a matrix whose
eigenvectors constitute a basis on which spatial patterns on trees can be
expressed by linear combination. The spectrum of eigenvalues of the coupling
matrix exhibit a nonuniform distribution which manifest itself in the
bifurcation structure of the spatially synchronized modes. These models may
describe reaction-diffusion processes and several other phenomena occurring on
heterogeneous media with hierarchical structure.Comment: Submitted to Phys. Rev. E, 15 pages, 9 fig