research

Quadrupole collectivity in neutron-deficient Sn nuclei: \nuc{104}{Sn} and the role of proton excitations

Abstract

We report on the experimental study of quadrupole collectivity in the neutron-deficient nucleus \nuc{104}{Sn} using intermediate-energy Coulomb excitation. The B(E2;01+21+)B(E2; 0^+_1 \rightarrow 2^+_1) value for the excitation of the first 2+2^+ state in \nuc{104}{Sn} has been measured to be 0.180(37) e20.180(37)~e^2b2^2 relative to the well-known B(E2)B(E2) value of \nuc{102}{Cd}. This result disagrees by more than one sigma with a recently published measurement \cite{Gua13}. Our result indicates that the most modern many-body calculations remain unable to describe the enhanced collectivity below mid-shell in Sn approaching N=Z=50N=Z=50. We attribute the enhanced collectivity to proton particle-hole configurations beyond the necessarily limited shell-model spaces and suggest the asymmetry of the B(E2)B(E2)-value trend around mid-shell to originate from enhanced proton excitations across Z=50Z=50 as N=ZN=Z is approached.Comment: Accepted for publication as rapid communication in Physical Review

    Similar works

    Full text

    thumbnail-image

    Available Versions