276 research outputs found
Well-posedness, energy and charge conservation for nonlinear wave equations in discrete space-time
We consider the problem of discretization for the U(1)-invariant nonlinear
wave equations in any dimension. We show that the classical finite-difference
scheme used by Strauss and Vazquez \cite{MR0503140} conserves the
positive-definite discrete analog of the energy if the grid ratio is , where and are the mesh sizes of the time and space
variables and is the spatial dimension. We also show that if the grid ratio
is , then there is the discrete analog of the charge which is
conserved.
We prove the existence and uniqueness of solutions to the discrete Cauchy
problem. We use the energy conservation to obtain the a priori bounds for
finite energy solutions, thus showing that the Strauss -- Vazquez
finite-difference scheme for the nonlinear Klein-Gordon equation with positive
nonlinear term in the Hamiltonian is conditionally stable.Comment: 10 page
Spallation Residues in the Reaction 56Fe + p at 0.3, 0.5, 0.75, 1.0 and 1.5 A GeV
The spallation residues produced in the bombardment of 56}Fe at 1.5, 1.0,
0.75, 0.5 and 0.3 A GeV on a liquid-hydrogen target have been measured using
the reverse kinematics technique and the Fragment Separator at GSI (Darmstadt).
This technique has permitted the full identification in charge and mass of all
isotopes produced with cross-sections larger than 10^{-2} mb down to Z=8. Their
individual production cross-sections and recoil velocities at the five energies
are presented. Production cross-sections are compared to previously existing
data and to empirical parametric formulas, often used in cosmic-ray
astrophysics. The experimental data are also extensively compared to different
combinations of intra-nuclear cascade and de-excitation models. It is shown
that the yields of the lightest isotopes cannot be accounted for by standard
evaporation models. The GEMINI model, which includes an asymmetric fission
decay mode, gives an overall good agreement with the data. These experimental
data can be directly used for the estimation of composition modifications and
damages in materials containing iron in spallation sources. They are also
useful for improving high precision cosmic-ray measurements.Comment: Submited to Phys. Rev. C (10/2006
A Closed Contour of Integration in Regge Calculus
The analytic structure of the Regge action on a cone in dimensions over a
boundary of arbitrary topology is determined in simplicial minisuperspace. The
minisuperspace is defined by the assignment of a single internal edge length to
all 1-simplices emanating from the cone vertex, and a single boundary edge
length to all 1-simplices lying on the boundary. The Regge action is analyzed
in the space of complex edge lengths, and it is shown that there are three
finite branch points in this complex plane. A closed contour of integration
encircling the branch points is shown to yield a convergent real wave function.
This closed contour can be deformed to a steepest descent contour for all sizes
of the bounding universe. In general, the contour yields an oscillating wave
function for universes of size greater than a critical value which depends on
the topology of the bounding universe. For values less than the critical value
the wave function exhibits exponential behaviour. It is shown that the critical
value is positive for spherical topology in arbitrary dimensions. In three
dimensions we compute the critical value for a boundary universe of arbitrary
genus, while in four and five dimensions we study examples of product manifolds
and connected sums.Comment: 16 pages, Latex, To appear in Gen. Rel. Gra
Recoil Studies in the Reaction of 12-C Ions with the Enriched Isotope 118-Sn
The recoil properties of the product nuclei from the interaction of 2.2
GeV/nucleon 12-C ions from Nuclotron of the Laboratory of High Energies (LHE),
Joint Institute for Nuclear Research (JINR) at Dubna with a 118-Sn target have
been studied using catcher foils. The experimental data were analyzed using the
mathematical formalism of the standard two-step vector model. The results for
12-C ions are compared with those for deuterons and protons. Three different
Los Alamos versions of the Quark-Gluon String Model (LAQGSM) were used for
comparison with our experimental data.Comment: 10 pages, 6 figures, submitted to Nucl. Phys.
Spallation reactions. A successful interplay between modeling and applications
The spallation reactions are a type of nuclear reaction which occur in space
by interaction of the cosmic rays with interstellar bodies. The first
spallation reactions induced with an accelerator took place in 1947 at the
Berkeley cyclotron (University of California) with 200 MeV deuterons and 400
MeV alpha beams. They highlighted the multiple emission of neutrons and charged
particles and the production of a large number of residual nuclei far different
from the target nuclei. The same year R. Serber describes the reaction in two
steps: a first and fast one with high-energy particle emission leading to an
excited remnant nucleus, and a second one, much slower, the de-excitation of
the remnant. In 2010 IAEA organized a worskhop to present the results of the
most widely used spallation codes within a benchmark of spallation models. If
one of the goals was to understand the deficiencies, if any, in each code, one
remarkable outcome points out the overall high-quality level of some models and
so the great improvements achieved since Serber. Particle transport codes can
then rely on such spallation models to treat the reactions between a light
particle and an atomic nucleus with energies spanning from few tens of MeV up
to some GeV. An overview of the spallation reactions modeling is presented in
order to point out the incomparable contribution of models based on basic
physics to numerous applications where such reactions occur. Validations or
benchmarks, which are necessary steps in the improvement process, are also
addressed, as well as the potential future domains of development. Spallation
reactions modeling is a representative case of continuous studies aiming at
understanding a reaction mechanism and which end up in a powerful tool.Comment: 59 pages, 54 figures, Revie
HPV infection and p53 and p16 expression in esophageal cancer: are they prognostic factors?
Background: Esophageal squamous cell carcinoma (ESCC) is a highly lethal malignant tumor. Currently, Human papillomavirus (HPV) is suggested as a potential risk factor for esophageal cancer (EC) in addition to the classic risk factors, alcohol and tobacco, but this hypothesis still remains contradictory. We sought to investigate wether HPV and well-known biomarkers (p16 and p53) and patient-related factors that may have impact on survival of ESCC.
Methods: We conducted a prospective cohort study. By using multiplex PCR, we determined the prevalence of high risk HPV in ESCC, and evaluated the immunohistochemical expression of p16 and p53, molecular markers related to esophageal carcinogenesis in order to verify the potential influence of these variables in patients's survival. Survival rates were estimated using Kaplan-Meier methods. A multivariate confirmatory model was performed using Cox proportional hazards regression.
Results: Twelve (13.8%) of 87 patients were HPV-DNA positive. Positive reactions of p16 and p53 were 10.7% and 68.6%, respectively. Kaplan-Meier analysis indicated that men (p = 0.025) had poor specific-cancer survival and a shorter progression-free survival (p = 0.050) as compared to women; III or IV clinical stage (p < 0.019) had poor specific-cancer survival and a shorter progression-free survival (p < 0.001) compared to I and II clinical stage; not submitted to surgery (< 0.001) and not submitted to chemoradiotherapy (p = 0.039) had a poor specific-cancer survival, as well. The multivariate analysis showed that HPV, p16 and p53 status are not predictive parameters of progression-free and specific-cancer survival.
Conclusion: HPV infection and p53 and p16 expression are not prognostic factors in ESCC.CNPq Universal for providing supplies to the largest study, of which this
study is a part of, entitled “The role of human papillomavirus (HPV) as the
etiologic agent of esophageal cancer. A cross-sectional study, case-control
and longitudinal at Barretos Cancer Hospital”; (Grant number 482666/2012–9
to ALF); INCT HPV [Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) [Grant number 08/57889–1 to LLV]; Conselho Nacional de
Desenvolvimento Científico e Tencnológico (CNPq) (Grant number 573799/
2008–3 to LLV)].info:eu-repo/semantics/publishedVersio
Haploinsufficiency of microglial MyD88 ameliorates Alzheimer's pathology and vascular disorders in APP/PS1-transgenic mice
Growing evidence indicates that innate immune molecules regulate microglial activation in Alzheimer's disease (AD); however, their effects on amyloid pathology and neurodegeneration remain inconclusive. Here, we conditionally deleted one allele of myd88 gene specifically in microglia in APP/PS1-transgenic mice by 6 months and analyzed AD-associated pathologies by 9 months. We observed that heterozygous deletion of myd88 gene in microglia decreased cerebral amyloid β (Aβ) load and improved cognitive function of AD mice, which was correlated with reduced number of microglia in the brain and inhibited transcription of inflammatory genes, for example, tnf-α and il-1β, in both brain tissues and individual microglia. To investigate mechanisms underlying the pathological improvement, we observed that haploinsufficiency of MyD88 increased microglial recruitment toward Aβ deposits, which might facilitate Aβ clearance. Microglia with haploinsufficient expression of MyD88 also increased vasculature in the brain of APP/PS1-transgenic mice, which was associated with up-regulated transcription of osteopontin and insulin-like growth factor genes in microglia. Moreover, MyD88-haploinsufficient microglia elevated protein levels of LRP1 in cerebral capillaries of APP/PS1-transgenic mice. Cell culture experiments further showed that treatments with interleukin-1β decreased LRP1 expression in pericytes. In summary, haploinsufficiency of MyD88 in microglia at a late disease stage attenuates pro-inflammatory activation and amyloid pathology, prevents the impairment of microvasculature and perhaps also protects LRP1-mediated Aβ clearance in the brain of APP/PS1-transgenic mice, all of which improves neuronal function of AD mice
Variation of nonequilibrium processes in p+Ni system with beam energy
The energy and angular dependence of double differential cross sections
dsigma/dOmega dE were measured for p, d, t, 3,4He, 6,7Li, 7,9Be, and 10,11B
produced in collisions of 0.175 GeV protons with Ni target. The analysis of
measured dfferential cross sections allowed to extract total production cross
sections for ejectiles listed above. The shape of the spectra and angular
distributions indicate the presence of other nonequilibrium processes besides
the emission of nucleons from the intranuclear cascade, and besides the
evaporation of various particles from remnants of intranuclear cascade. These
nonequilibrium processes consist of coalescence of nucleons into light charged
particles during the intranuclear cascade, of the fireball emission which
contributes to the cross sections of protons and deuterons, and of the break-up
of the target nucleus which leads to the emission of intermediate mass
fragments. All such processes were found earlier at beam energies 1.2, 1.9, and
2.5 GeV for Ni as well as for Au targets, however, significant differences in
properties of these processes at high and low beam energy are observed in the
present study.Comment: 10 pages, 9 figure
Competition of coalescence and "fireball" processes in nonequilibrium emission of light charged particles from p+Au collisions
The energy and angular dependence of double differential cross sections was
measured for p,d,t,He,Li,Be, and B isotopes produced in collisions of 1.2 and
1.9 GeV protons with Au target. The shape of the spectra and angular
distributions almost does not change in the beam energy range from 1.2 to 2.5
GeV, however, the absolute value of the cross sections increases for all
ejectiles. A phenomenological model of two emitting, moving sources reproduces
very well spectra and angular distributions of intermediate mass fragments.
Double differential cross sections for light charged particles (LCP) were
analyzed in the frame of the microscopic model of intranuclear cascade (INC)
with coalescence of nucleons and statistical model for evaporation of particles
from excited residual nuclei. Energy and angular dependencies of data agree
satisfactorily neither with predictions of microscopic intranuclear cascade
calculations for protons, nor with coalescence calculations for other LCP.
Phenomenological inclusion of another reaction mechanism - emission of LCP from
a "fireball", i.e., fast and hot moving source - combined with the microscopic
model calculations of INC, coalescence and evaporation of particles leads to
very good description of the data. It was found that nonequilibrium processes
are very important for production of LCP. They exhaust 40-80% of the total
cross sections - depending on the emitted particles. Coalescence and "fireball"
emission give comparable contributions to the cross sections with exception of
3He data where coalescence clearly dominates. The ratio of sum of all
nonequilibrium processes to those proceeding through stage of statistical
equilibrium does almost not change in the beam energy range from 1.2 GeV to 2.5
GeV for all light charged particles.Comment: 14 pages, 12 figures, IV tables, \pacs{25.40.-h,25.40.Sc,25.40.Ve
A 115-bp MethyLight assay for detection of p16 (CDKN2A) methylation as a diagnostic biomarker in human tissues
<p>Abstract</p> <p>Background</p> <p><it>p16 </it>Methylation is a potential biomarker for prediction of malignant transformation of epithelial dysplasia. A probe-based, quantitative, methylation-specific PCR (MSP) called MethyLight may become an eligible method for detecting this marker clinically. We studied oral mucosa biopsies with epithelial dysplasia from 78 patients enrolled in a published 4-years' followup cohort, in which cancer risk for patients with <it>p16 </it>methylation-positive dysplasia was significantly higher than those without <it>p16 </it>methylation (by 150-bp MSP and bisulfite sequencing; +133 ~ +283, transcription starting site, +1). The <it>p16 </it>methylation status in samples (<it>N </it>= 102) containing sufficient DNA was analyzed by the 70-bp classic (+238 ~ +307) and 115-bp novel (+157 ~ +272) MethyLight assays, respectively.</p> <p>Results</p> <p><it>p16 </it>Methylation was detectable in 75 samples using the classic MethyLight assay. The methylated-<it>p16 </it>positive rate and proportion of methylated-<it>p16 </it>by the MethyLight in MSP-positive samples were higher than those in MSP-negative samples (positive rate: 37/44 vs. 38/58, <it>P</it>=0.035, two-sided; proportion [median]: 0.78 vs. 0.02, <it>P <</it>0.007). Using the published results of MSP as a golden standard, we found sensitivity, specificity, and accuracy for this MethyLight assay to be 70.5%, 84.5%, and 55.0%, respectively. Because amplicon of the classic MethyLight procedure only partially overlapped with the MSP amplicon, we further designed a 115-bp novel MethyLight assay in which the amplicon on the sense-strand fully overlapped with the MSP amplicon on the antisense-strand. Using the 115-bp MethyLight assay, we observed methylated-<it>p16 </it>in 26 of 44 MSP-positive samples and 2 of 58 MSP-negative ones (<it>P </it>= 0.000). These results were confirmed with clone sequencing. Sensitivity, specificity, and accuracy using the 115-bp MethyLight assay were 59.1%, 98.3%, and 57.4%, respectively. Significant differences in the oral cancer rate were observed during the followup between patients (≥60 years) with and without methylated-<it>p16 </it>as detected by the 115-bp MethyLight assay (6/8 vs. 6/22, P = 0.034, two-sided).</p> <p>Conclusions</p> <p>The 115-bp MethyLight assay is a useful and practical assay with very high specificity for the detection of <it>p16 </it>methylation clinically.</p
- …
