518 research outputs found
Loudly sing cuckoo : More-than-human seasonalities in Britain
This research was funded by a grant from the Arts and Humanities Research Council, grant number AH/E009573/1.Peer reviewedPostprin
Designing peptide nanoparticles for efficient brain delivery
The targeted delivery of therapeutic compounds to the brain is arguably the most significant open problem in drug delivery today. Nanoparticles (NPs) based on peptides and designed using the emerging principles of molecular engineering show enormous promise in overcoming many of the barriers to brain delivery faced by NPs made of more traditional materials. However, shortcomings in our understanding of peptide self-assembly and bloodâbrain barrier (BBB) transport mechanisms pose significant obstacles to progress in this area. In this review, we discuss recent work in engineering peptide nanocarriers for the delivery of therapeutic compounds to the brain, from synthesis, to self-assembly, to in vivo studies, as well as discussing in detail the biological hurdles that a nanoparticle must overcome to reach the brain
Software that goes with the flow in systems biology
A recent article in BMC Bioinformatics describes new advances in workflow systems for computational modeling in systems biology. Such systems can accelerate, and improve the consistency of, modeling through automation not only at the simulation and results-production stages, but also at the model-generation stage. Their work is a harbinger of the next generation of more powerful software for systems biologists
Reconfigurable ferromagnetic liquid droplets.
Solid ferromagnetic materials are rigid in shape and cannot be reconfigured. Ferrofluids, although reconfigurable, are paramagnetic at room temperature and lose their magnetization when the applied magnetic field is removed. Here, we show a reversible paramagnetic-to-ferromagnetic transformation of ferrofluid droplets by the jamming of a monolayer of magnetic nanoparticles assembled at the water-oil interface. These ferromagnetic liquid droplets exhibit a finite coercivity and remanent magnetization. They can be easily reconfigured into different shapes while preserving the magnetic properties of solid ferromagnets with classic north-south dipole interactions. Their translational and rotational motions can be actuated remotely and precisely by an external magnetic field, inspiring studies on active matter, energy-dissipative assemblies, and programmable liquid constructs
Recommended from our members
An evaluation of modelling approaches and column removal time on progressive collapse of building
Over the last few decades, progressive collapse disasters have drawn the attention of codified bodies around the globe; as a consequence, there has been a renewed research interest. Structural engineering systems are prone to progressive collapse when subjected to abnormal loads beyond the ultimate capacity of critical structural members. Sudden loss of critical structural member(s) triggers failure mechanisms which may result in a total or partial collapse of the structure proportionate or disproportionate to the triggering event. Currently, researchers adopt different modelling techniques to simulate the loss of critical load bearing members for progressive collapse assessment. GSA guidelines recommend a column removal time less than a tenth of the period of the structure in the vertical vibration mode. Consequently, this recommendation allows a wide range of column removal time which produces inconsistent results satisfying GSA recommendation. A choice of a load time history function assumed for gravity and the internal column force interaction affects the response of the structure. This paper compares different alternative numerical approaches to simulate the sudden column removal in frame buildings and to investigate the effect of rising time on the structural response
Structural, item, and test generalizability of the psychopathology checklist - revised to offenders with intellectual disabilities
The Psychopathy ChecklistâRevised (PCL-R) is the most widely used measure of psychopathy in forensic clinical practice, but the generalizability of the measure to offenders with intellectual disabilities (ID) has not been clearly established. This study examined the structural equivalence and scalar equivalence of the PCL-R in a sample of 185 male offenders with ID in forensic mental health settings, as compared with a sample of 1,212 male prisoners without ID. Three models of the PCL-Râs factor structure were evaluated with confirmatory factor analysis. The 3-factor hierarchical model of psychopathy was found to be a good fit to the ID PCL-R data, whereas neither the 4-factor model nor the traditional 2-factor model fitted. There were no cross-group differences in the factor structure, providing evidence of structural equivalence. However, item response theory analyses indicated metric differences in the ratings of psychopathy symptoms between the ID group and the comparison prisoner group. This finding has potential implications for the interpretation of PCL-R scores obtained with people with ID in forensic psychiatric settings
A laboratory study on cold-mix, cold-lay emulsion mixtures
This paper describes laboratory experiments and presents
results for the performances of cold-mix, cold-lay
emulsion mixtures. The main objective of the experiments
was to evaluate and improve the properties of the cold
mixtures. The mixture properties evaluated were:
volumetric properties, indirect tensile stiffness modulus
(ITSM), repeated load axial creep and fatigue. These
properties were compared with conventional hot asphalt
mixtures not containing any waste/recycled materials. To
optimise the performances of the mixtures, a target of
ITSM value of 2000 MPa was selected. At full curing
conditions, the stiffness of the cold mixes was found to be
very similar to that of hot mixtures of the same
penetration grade base bitumen (100 pen). Test results
also show that the addition of 1â2% cement significantly
improved the mechanical performance of the mixes and
significantly accelerated their strength gain. The fatigue
behaviour of the cold mixes that incorporated cement was
comparable with that of the hot mixtures
Tops and Writhing DNA
The torsional elasticity of semiflexible polymers like DNA is of biological
significance. A mathematical treatment of this problem was begun by Fuller
using the relation between link, twist and writhe, but progress has been
hindered by the non-local nature of the writhe. This stands in the way of an
analytic statistical mechanical treatment, which takes into account thermal
fluctuations, in computing the partition function. In this paper we use the
well known analogy with the dynamics of tops to show that when subjected to
stretch and twist, the polymer configurations which dominate the partition
function admit a local writhe formulation in the spirit of Fuller and thus
provide an underlying justification for the use of Fuller's "local writhe
expression" which leads to considerable mathematical simplification in solving
theoretical models of DNA and elucidating their predictions. Our result
facilitates comparison of the theoretical models with single molecule
micromanipulation experiments and computer simulations.Comment: 17 pages two figure
- âŚ