2,124 research outputs found

    Conservation of dielectric constant upon amorphization in perovskite oxides

    Full text link
    We report calculations indicating that amorphous RAO3_3 oxides, with R and A trivalent cations, have approximately the same static dielectric constant as their perovskite crystal phase. The effect is due to the disorder-activated polar response of non-polar crystal modes at low frequency, which compensates a moderate but appreciable reduction of the ionic dynamical charges. The dielectric response was studied via density-functional perturbation theory. Amorphous samples were generated by molecular dynamics melt-and-quench simulations.Comment: 5 pages, 3 figure

    A non-perturbative study of matter field propagators in Euclidean Yang-Mills theory in linear covariant, Curci-Ferrari and maximal Abelian gauges

    Full text link
    In this work, we study the propagators of matter fields within the framework of the Refined Gribov-Zwanziger theory, which takes into account the effects of the Gribov copies in the gauge-fixing quantization procedure of Yang-Mills theory. In full analogy with the pure gluon sector of the Refined Gribov-Zwanziger action, a non-local long-range term in the inverse of the Faddeev-Popov operator is added in the matter sector. Making use of the recent BRST invariant formulation of the Gribov-Zwanziger framework achieved in [Capri et al 2016], the propagators of scalar and quark fields in the adjoint and fundamental representations of the gauge group are worked out explicitly in the linear covariant, Curci-Ferrari and maximal Abelian gauges. Whenever lattice data are available, our results exhibit good qualitative agreement.Comment: 27 pages, no figures; V2, minor modifications, to appear in EPJ

    Nonperturbative aspects of Euclidean Yang-Mills theories in linear covariant gauges : Nielsen identities and a BRST-invariant two-point correlation function

    Get PDF
    In order to construct a gauge-invariant two-point function in a Yang-Mills theory, we propose the use of the all-order gauge-invariant transverse configurations A(h). Such configurations can be obtained through the minimization of the functional A(min)(2) along the gauge orbit within the BRST-invariant formulation of the Gribov-Zwanziger framework recently put forward in [1,2] for the class of the linear covariant gauges. This correlator turns out to provide a characterization of nonperturbative aspects of the theory in a BRST-invariant and gauge-parameter-independent way. In particular, it turns out that the poles of are the same as those of the transverse part of the gluon propagator, which are also formally shown to be independent of the gauge parameter alpha entering the gauge condition through the Nielsen identities. The latter follow from the new exact BRST-invariant formulation introduced before. Moreover, the correlator enables us to attach a BRST-invariant meaning to the possible positivity violation of the corresponding temporal Schwinger correlator, giving thus for the first time a consistent, gauge parameter independent, setup to adopt the positivity violation of as a signature for gluon confinement. Finally, in the context of gauge theories supplemented with a fundamental Higgs field, we use to probe the pole structure of the massive gauge boson in a gauge-invariant fashion

    Giant Oscillating Thermopower at Oxide Interfaces

    Get PDF
    Understanding the nature of charge carriers at the LaAlO3/SrTiO3 interface is one of the major open issues in the full comprehension of the charge confinement phenomenon in oxide heterostructures. Here, we investigate thermopower to study the electronic structure in LaAlO3/SrTiO3 at low temperature as a function of gate field. In particular, under large negative gate voltage, corresponding to the strongly depleted charge density regime, thermopower displays record-high negative values of the order of 10^4 - 10^5 microV/K, oscillating at regular intervals as a function of the gate voltage. The huge thermopower magnitude can be attributed to the phonon-drag contribution, while the oscillations map the progressive depletion and the Fermi level descent across a dense array of localized states lying at the bottom of the Ti 3d conduction band. This study is the first direct evidence of a localized Anderson tail in the two-dimensional (2D) electron liquid at the LaAlO3/SrTiO3 interface.Comment: Main text: 28 pages and 3 figures; Supplementary information: 29 pages, 5 figures and 1 tabl
    corecore