48,859 research outputs found
Toxicity studies of Coolanol 15 Final report, Jan. - Sep. 1965
Toxicity studies of synthetic fluid coolant for manned spacecraft heat transfer system
Gas Content, Size, Temperature and Velocity Effects on Cavitation Inception Internal Report No. 31
Gas content, size temperature, and velocity effects on Venturi cavity inceptio
Investigation of microwave transitions and nonlinear magneto-optical rotation in anti-relaxation-coated cells
Using laser optical pumping, widths and frequency shifts are determined for
microwave transitions between ground-state hyperfine components of Rb
and Rb atoms contained in vapor cells with alkane anti-relaxation
coatings. The results are compared with data on Zeeman relaxation obtained in
nonlinear magneto-optical rotation (NMOR) experiments, a comparison important
for quantitative understanding of spin-relaxation mechanisms in coated cells.
By comparing cells manufactured over a forty-year period we demonstrate the
long-term stability of coated cells, an important property for atomic clocks
and magnetometers
A multiband radiometer and data acquisition system for remote sensing field research
Specifications are described for a recently developed prototype multispectral data acquisition system which consists of multiband radiometer with 8 bands between 0.4 and 12.5 micrometers and a data recording module to record data from the radometer and ancillary sources. The systems is adaptable to helicopter, truck, or tripod platforms, as well as hand-held operation. The general characteristics are: (1) comparatively inexpensive to acquire, maintain and operate; (2) simple to operate and calibrate; (3) complete with data hardware and software; and (4) well documented for use by researchers. The instrument system is to be commercially available and can be utilized by many researchers to obtain large numbers of accurate, calibrated spectral measurements. It can be a key element in improving and advancing the capability for field research in remote sensing
Some Physical Consequences of Abrupt Changes in the Multipole Moments of a Gravitating Body
The Barrab\`es-Israel theory of light-like shells in General Relativity is
used to show explicitly that in general a light-like shell is accompanied by an
impulsive gravitational wave. The gravitational wave is identified by its
Petrov Type N contribution to a Dirac delta-function term in the Weyl conformal
curvature tensor (with the delta-function singular on the null hypersurface
history of the wave and shell). An example is described in which an
asymptotically flat static vacuum Weyl space-time experiences a sudden change
across a null hypersurface in the multipole moments of its isolated axially
symmetric source. A light-like shell and an impulsive gravitational wave are
identified, both having the null hypersurface as history. The stress-energy in
the shell is dominated (at large distance from the source) by the jump in the
monopole moment (the mass) of the source with the jump in the quadrupole moment
mainly responsible for the stress being anisotropic. The gravitational wave
owes its existence principally to the jump in the quadrupole moment of the
source confirming what would be expected.Comment: 26 pages, tex, no figures, to appear in Phys.Rev.
Faint Radio Sources and Star Formation History
Faint extragalactic radio sources provide important information about the
global history of star formation. Sensitive radio observations of the Hubble
Deep Field and other fields have found that sub-mJy radio sources are
predominantly associated with star formation activity rather than AGN. Radio
observations of star forming galaxies have the advantage of being independent
of extinction by dust. We use the FIR-radio correlation to compare the radio
and FIR backgrounds, and make several conclusions about the star forming
galaxies producing the FIR background. We then use the redshift distribution of
faint radio sources to determine the evolution of the radio luminosity
function, and thus estimate the star formation density as a function of
redshift.Comment: 12 pages, 9 figures, latex using texas.sty, to appear in the CD-ROM
Proceedings of the 19th Texas Symposium on Relativistic Astrophysics and
Cosmology, held in Paris, France, Dec. 14-18, 1998. Eds.: J. Paul, T.
Montmerle, and E. Aubourg (CEA Saclay). No changes to paper, just updated
publication info in this commen
Accommodations for Secondary Payloads in NASA's Space Launch System
NASA's new heavy-lift launch vehicle, the Space Launch System (SLS), is moving closer to its planned 2019 launch, with the in-space stage and spacecraft adapters complete and all other major elements of the rocket manufactured and currently being outfitted for flight. Exploration Mission-1 (EM-1), the first flight of SLS and the new Orion crew vehicle, will verify and validate new systems and provide an unparalleled opportunity for 13 6U CubeSat-class payloads to be released into deep space. Payloads are being developed by NASA, industry, international and academic partners and were selected for the EM-1 flight to address strategic knowledge gaps in the agency's plans for human deep space exploration. Destinations range from the lunar surface to an asteroid to an orbit around the Earth-moon L2 libration point. Missions include studying the effects of space radiation on a living organism (yeast), landing the smallest lander to date on the moon, and searching for water in permanently shaded lunar craters. Propulsion technology demonstrations include solar sails, use of inert water to carry out lunar gravity assist maneuvers, and use of new "green" chemical propellants. SLS employs an evolutionary design approach, with an initial capability of at least 26 metric tons (t) to trans-lunar injection (TLI). The later Block 1B configuration, which will become the Agency's workhorse launch vehicle into the 2020s, will lift at least 34 t to TLI in its crew configuration and at least 37 t in the cargo configuration. In addition to greater lift capability, Block 1B will also offer larger payload volume than Block 1 for both co-manifested and secondary payloads. In Block 1B, various combinations of 6U, 12U and 27U payloads may be accommodated in the vehicle's stage adapter. Opportunities for deep space research once out of reach for small science payloads will be within reach, opening many possibilities for exciting new technology demonstrations and scientific missions. This paper will provide an overview of the capabilities and the status of the Block 1 vehicle, with particular emphasis on the secondary payload accommodations and the deployment system. Brief descriptions of the 13 6U EM-1 payloads will be included. In addition, a discussion of the payload developers' responsibilities and the Space Launch System Program's roles and responsibilities in accommodating these and future payloads will be included. Finally, the author will look ahead to SLS Block 1B and missions beyond EM-1 and the opportunities for 6U, 12U and 27U CubeSats
Simultaneous Border-Collision and Period-Doubling Bifurcations
We unfold the codimension-two simultaneous occurrence of a border-collision
bifurcation and a period-doubling bifurcation for a general piecewise-smooth,
continuous map. We find that, with sufficient non-degeneracy conditions, a
locus of period-doubling bifurcations emanates non-tangentially from a locus of
border-collision bifurcations. The corresponding period-doubled solution
undergoes a border-collision bifurcation along a curve emanating from the
codimension-two point and tangent to the period-doubling locus here. In the
case that the map is one-dimensional local dynamics are completely classified;
in particular, we give conditions that ensure chaos.Comment: 22 pages; 5 figure
NASA's Space Launch System: SmallSat Deployment to Deep Space
Leveraging the significant capability it offers for human exploration and flagship science missions, NASA's Space Launch System (SLS) also provides a unique opportunity for lower-cost deep-space science in the form of small-satellite secondary payloads. Current plans call for such opportunities to begin with the rocket's first flight; a launch of the vehicle's Block 1 configuration, capable of delivering 70 metric tons (t) to Low Earth Orbit (LEO), which will send the Orion crew vehicle around the moon and return it to Earth. On that flight, SLS will also deploy 13 CubeSat-class payloads to deep-space destinations. These secondary payloads will include not only NASA research, but also spacecraft from industry and international partners and academia. The payloads also represent a variety of disciplines including, but not limited to, studies of the moon, Earth, sun, and asteroids. While the SLS Program is making significant progress toward that first launch, preparations are already under way for the second, which will see the booster evolve to its more-capable Block 1B configuration, able to deliver 105t to LEO. That configuration will have the capability to carry large payloads co-manifested with the Orion spacecraft, or to utilize an 8.4-meter (m) fairing to carry payloads several times larger than are currently possible. The Block 1B vehicle will be the workhorse of the Proving Ground phase of NASA's deep-space exploration plans, developing and testing the systems and capabilities necessary for human missions into deep space and ultimately to Mars. Ultimately, the vehicle will evolve to its full Block 2 configuration, with a LEO capability of 130 metric tons. Both the Block 1B and Block 2 versions of the vehicle will be able to carry larger secondary payloads than the Block 1 configuration, creating even more opportunities for affordable scientific exploration of deep space. This paper will outline the progress being made toward flying smallsats on the first flight of SLS, and discuss future opportunities for smallsats on subsequent flights
Mid-infrared and optical spectroscopy of ultraluminous infrared galaxies: A comparison
New tools from Infrared Space Observatory (ISO) mid-infrared spectroscopy
have recently become available to determine the power sources of dust-obscured
ultraluminous infrared galaxies (ULIRGs). We compare ISO classifications -
starburst or active galactic nucleus (AGN) - with classifications from optical
spectroscopy, and with optical/near-infrared searches for hidden broad-line
regions. The agreement between mid-infrared and optical classification is
excellent if optical LINER spectra are assigned to the starburst group. The
starburst nature of ULIRG LINERs strongly supports the suggestion that LINER
spectra in infrared-selected galaxies, rather than being an expression of the
AGN phenomenon, are due to shocks that are probably related to galactic
superwinds. Differences between ISO and optical classification provide clues on
the evolution of ULIRGs and on the configuration of obscuring dust. We find few
ISO AGN with optical HII or LINER identification, suggesting that highly
obscured AGN exist but are not typical for the ULIRG phenomenon in general.
Rather, our results indicate that strong AGN activity, once triggered, quickly
breaks the obscuring screen at least in certain directions, thus becoming
detectable over a wide wavelength range.Comment: aastex, 1 eps figure. Accepted by ApJ (Letters
- …
