18,001 research outputs found

    Word contexts enhance the neural representation of individual letters in early visual cortex

    No full text
    Visual context facilitates perception, but how this is neurally implemented remains unclear. One example of contextual facilitation is found in reading, where letters are more easily identified when embedded in a word. Bottom-up models explain this word advantage as a post-perceptual decision bias, while top-down models propose that word contexts enhance perception itself. Here, we arbitrate between these accounts by presenting words and nonwords and probing the representational fidelity of individual letters using functional magnetic resonance imaging. In line with top-down models, we find that word contexts enhance letter representations in early visual cortex. Moreover, we observe increased coupling between letter information in visual cortex and brain activity in key areas of the reading network, suggesting these areas may be the source of the enhancement. Our results provide evidence for top-down representational enhancement in word recognition, demonstrating that word contexts can modulate perceptual processing already at the earliest visual regions

    Updating contextual sensory expectations for adaptive behaviour

    Get PDF
    The brain has the extraordinary capacity to construct predictive models of the environment by internalizing statistical regularities in the sensory inputs. The resulting sensory expectations shape how we perceive and react to the world; at the neural level, this relates to decreased neural responses to expected than unexpected stimuli (‘expectation suppression’). Crucially, expectations may need revision as context changes. However, existing research has often neglected this issue. Further, it is unclear whether contextual revisions apply selectively to expectations relevant to the task at hand, hence serving adaptive behaviour. The present fMRI study examined how contextual visual expectations spread throughout the cortical hierarchy as participants update their beliefs. We created a volatile environment with two state spaces presented over separate contexts and controlled by an independent contextualizing signal. Participants attended a training session before scanning to learn contextual temporal associations among pairs of object images. The fMRI experiment then tested for the emergence of contextual expectation suppression in two separate tasks, respectively with task-relevant and task-irrelevant expectations. Behavioural and neural effects of contextual expectation emerged progressively across the cortical hierarchy as participants attuned themselves to the context: expectation suppression appeared first in the insula, inferior frontal gyrus and posterior parietal cortex, followed by the ventral visual stream, up to early visual cortex. This applied selectively to task-relevant expectations. Taken together, the present results suggest that an insular and frontoparietal executive control network may guide the flexible deployment of contextual sensory expectations for adaptive behaviour in our complex and dynamic world.<br

    Seeds Buffering for Information Spreading Processes

    Full text link
    Seeding strategies for influence maximization in social networks have been studied for more than a decade. They have mainly relied on the activation of all resources (seeds) simultaneously in the beginning; yet, it has been shown that sequential seeding strategies are commonly better. This research focuses on studying sequential seeding with buffering, which is an extension to basic sequential seeding concept. The proposed method avoids choosing nodes that will be activated through the natural diffusion process, which is leading to better use of the budget for activating seed nodes in the social influence process. This approach was compared with sequential seeding without buffering and single stage seeding. The results on both real and artificial social networks confirm that the buffer-based consecutive seeding is a good trade-off between the final coverage and the time to reach it. It performs significantly better than its rivals for a fixed budget. The gain is obtained by dynamic rankings and the ability to detect network areas with nodes that are not yet activated and have high potential of activating their neighbours.Comment: Jankowski, J., Br\'odka, P., Michalski, R., & Kazienko, P. (2017, September). Seeds Buffering for Information Spreading Processes. In International Conference on Social Informatics (pp. 628-641). Springe

    The BOOMERANG North America Instrument: a balloon-borne bolometric radiometer optimized for measurements of cosmic background radiation anisotropies from 0.3 to 4 degrees

    Get PDF
    We describe the BOOMERANG North America (BNA) instrument, a balloon-borne bolometric radiometer designed to map the Cosmic Microwave Background (CMB) radiation with 0.3 deg resolution over a significant portion of the sky. This receiver employs new technologies in bolometers, readout electronics, millimeter-wave optics and filters, cryogenics, scan and attitude reconstruction. All these subsystems are described in detail in this paper. The system has been fully calibrated in flight using a variety of techniques which are described and compared. It has been able to obtain a measurement of the first peak in the CMB angular power spectrum in a single balloon flight, few hours long, and was a prototype of the BOOMERANG Long Duration Balloon (BLDB) experiment.Comment: 40 pages, 22 figures, submitted to Ap

    Mapping the CMB Sky: The BOOMERANG experiment

    Get PDF
    We describe the BOOMERanG experiment, a stratospheric balloon telescope intended to measure the Cosmic Microwave Background anisotropy at angular scales between a few degrees and ten arcminutes. The experiment has been optimized for a long duration (7 to 14 days) flight circumnavigating Antarctica at the end of 1998. A test flight was performed on Aug.30, 1997 in Texas. The level of performance achieved in the test flight was satisfactory and compatible with the requirements for the long duration flight.Comment: 11 pages, 6 figure

    Probing the Early Stages of Low-Mass Star Formation in LDN 1689N: Dust and Water in IRAS 16293-2422A, B, and E

    Get PDF
    We present deep images of dust continuum emission at 450, 800, and 850 micron of the dark cloud LDN 1689N which harbors the low-mass young stellar objects (YSOs) IRAS 16293-2422A and B (I16293A and I16293B) and the cold prestellar object I16293E. Toward the positions of I16293A and E we also obtained spectra of CO-isotopomers and deep submillimeter observations of chemically related molecules with high critical densities. To I16293A we report the detection of the HDO 1_01 - 0_00 and H2O 1_10 - 1_01 ground-state transitions as broad self-reversed emission profiles with narrow absorption, and a tentative detection of H2D+ 1_10 - 1_11. To I16293E we detect weak emission of subthermally excited HDO 1_01 - 0_00. Based on this set of submillimeter continuum and line data we model the envelopes around I16293A and E. The density and velocity structure of I16293A is fit by an inside-out collapse model, yielding a sound speed of a=0.7 km/s, an age of t=(0.6--2.5)e4 yr, and a mass of 6.1 Msun. The density in the envelope of I16293E is fit by a radial power law with index -1.0+/-0.2, a mass of 4.4 Msun, and a constant temperature of 16K. These respective models are used to study the chemistry of the envelopes of these pre- and protostellar objects. The [HDO]/[H2O] abundance ratio in the warm inner envelope of I16293A of a few times 1e-4 is comparable to that measured in comets. This supports the idea that the [HDO]/[H2O] ratio is determined in the cold prestellar core phase and conserved throughout the formation process of low-mass stars and planets.Comment: 61 pages, 17 figures. Accepted for publication in ApJ. To get Fig. 13: send email to [email protected]

    Foregrounds in the BOOMERANG-LDB data: a preliminary rms analysis

    Get PDF
    We present a preliminary analysis of the BOOMERanG LDB maps, focused on foregrounds. BOOMERanG detects dust emission at moderately low galactic latitudes (b>−20ob > -20^o) in bands centered at 90, 150, 240, 410 GHz. At higher Galactic latitudes, we use the BOOMERanG data to set conservative upper limits on the level of contamination at 90 and 150 GHz. We find that the mean square signal correlated with the IRAS/DIRBE dust template is less than 3% of the mean square signal due to CMB anisotropy

    Interstellar dust in the BOOMERanG maps

    Get PDF
    Interstellar dust (ISD) emission is present in the mm-wave maps obtained by the BOOMERanG experiment at intermediate and high Galactic latitudes. We find that, while being sub-dominant at the lower frequencies (90,150, 240 GHz), thermal emission from ISD is dominant at 410 GHz, and is well correlated with the IRAS map at 100 ”m. We find also that the angular power spectrum of ISD fluctuations at 410 GHz is a power law, and its level is negligible with respect to the angular power spectrum of the Cosmic Microwave Background (CMB) at 90 and 150 GHz

    Spin dynamics in the optical cycle of single nitrogen-vacancy centres in diamond

    Full text link
    We investigate spin-dependent decay and intersystem crossing in the optical cycle of single negatively-charged nitrogen-vacancy (NV) centres in diamond. We use spin control and pulsed optical excitation to extract both the spin-resolved lifetimes of the excited states and the degree of optically-induced spin polarization. By optically exciting the centre with a series of picosecond pulses, we determine the spin-flip probabilities per optical cycle, as well as the spin-dependent probability for intersystem crossing. This information, together with the indepedently measured decay rate of singlet population provides a full description of spin dynamics in the optical cycle of NV centres. The temperature dependence of the singlet population decay rate provides information on the number of singlet states involved in the optical cycle.Comment: 11 pages, 5 figure
    • 

    corecore