2,380 research outputs found
Novel designs for Penning ion traps
We present a number of alternative designs for Penning ion traps suitable for
quantum information processing (QIP) applications with atomic ions. The first
trap design is a simple array of long straight wires which allows easy optical
access. A prototype of this trap has been built to trap Ca+ and a simple
electronic detection scheme has been employed to demonstrate the operation of
the trap. Another trap design consists of a conducting plate with a hole in it
situated above a continuous conducting plane. The final trap design is based on
an array of pad electrodes. Although this trap design lacks the open geometry
of the traps described above, the pad design may prove useful in a hybrid
scheme in which information processing and qubit storage take place in
different types of trap. The behaviour of the pad traps is simulated
numerically and techniques for moving ions rapidly between traps are discussed.
Future experiments with these various designs are discussed. All of the designs
lend themselves to the construction of multiple trap arrays, as required for
scalable ion trap QIP.Comment: 11 pages, 10 figure
Photo-disintegration cross section measurements on W, Re and Os: Implications for the Re-Os cosmochronology
Cross sections of the W, Re, Os() reactions
were measured using quasi-monochromatic photon beams from laser Compton
scattering (LCS) with average energies from 7.3 to 10.9 MeV. The results are
compared with the predictions of Hauser-Feshbach statistical calculations using
four different sets of input parameters. In addition, the inverse neutron
capture cross sections were evaluated by constraining the model parameters,
especially the strength function, on the basis of the experimental data.
The present experiment helps to further constrain the correction factor
for the neutron capture on the 9.75 keV state in Os.
Implications of to the Re-Os cosmochronology are discussed with a
focus on the uncertainty in the estimate of the age of the Galaxy.Comment: 11 page
Disk Planet Interactions and Early Evolution in Young Planetary Systems
We study and review disk protoplanet interactions using local shearing box
simulations. These suffer the disadvantage of having potential artefacts
arising from periodic boundary conditions but the advantage, when compared to
global simulations, of being able to capture much of the dynamics close to the
protoplanet at high resolution for low computational cost. Cases with and
without self sustained MHD turbulence are considered. The conditions for gap
formation and the transition from type I migration are investigated and found
to depend on whether the single parameter M_p R^3/(M_* H^3), with M_p, M_*, R
and H being the protoplanet mass, the central mass, the orbital radius and the
disk semi-thickness respectively exceeds a number of order unity. We also
investigate the coorbital torques experienced by a moving protoplanet in an
inviscid disk. This is done by demonstrating the equivalence of the problem for
a moving protoplanet to one where the protoplanet is in a fixed orbit which the
disk material flows through radially as a result of the action of an
appropriate external torque. For sustainable coorbital torques to be realized a
quasi steady state must be realized in which the planet migrates through the
disk without accreting significant mass. In that case although there is
sensitivity to computational parameters, in agreement with earlier work by
Masset & Papaloizou (2003) based on global simulations, the coorbital torques
are proportional to the migration speed and result in a positive feedback on
the migration, enhancing it and potentially leading to a runaway. This could
lead to a fast migration for protoplanets in the Saturn mass range in massive
disks and may be relevant to the mass period correlation for extrasolar planets
which gives a preponderance of sub Jovian masses at short orbital period.Comment: To appear in Celestial Mechanics and Dynamical Astronomy (with higher
resolution figures
Design approaches in technology enhanced learning
Design is a critical to the successful development of any interactive learning environment (ILE). Moreover, in technology enhanced learning (TEL), the design process requires input from many diverse areas of expertise. As such, anyone undertaking tool development is required to directly address the design challenge from multiple perspectives. We provide a motivation and rationale for design approaches for learning technologies that draws upon Simon's seminal proposition of Design Science (Simon, 1969). We then review the application of Design Experiments (Brown, 1992) and Design Patterns (Alexander et al., 1977) and argue that a patterns approach has the potential to address many of the critical challenges faced by learning technologists
High-resolution measurement of the time-modulated orbital electron capture and of the decay of hydrogen-like Pm ions
The periodic time modulations, found recently in the two-body orbital
electron-capture (EC) decay of both, hydrogen-like Pr and
Pm ions, with periods near to 7s and amplitudes of about 20%,
were re-investigated for the case of Pm by using a 245 MHz
resonator cavity with a much improved sensitivity and time resolution. We
observed that the exponential EC decay is modulated with a period s, in accordance with a modulation period s as obtained
from simultaneous observations with a capacitive pick-up, employed also in the
previous experiments. The modulation amplitudes amount to and
for the 245 MHz resonator and the capacitive pick-up,
respectively. These new results corroborate for both detectors {\it exactly}
our previous findings of modulation periods near to 7s, though with {\it
distinctly smaller} amplitudes. Also the three-body decays have been
analyzed. For a supposed modulation period near to 7s we found an amplitude , compatible with and in agreement with the preliminary
result of our previous experiment. These observations could
point at weak interaction as origin of the observed 7s-modulation of the EC
decay. Furthermore, the data suggest that interference terms occur in the
two-body EC decay, although the neutrinos are not directly observed.Comment: In memoriam of Prof. Paul Kienle, 9 pages, 1 table, 5 figures Phys.
Lett. B (2013) onlin
The (co-)occurrence of problematic video gaming, substance use, and psychosocial problems in adolescents
Aims. The current study explored the nature of problematic (addictive) video gaming and the association with game type, psychosocial health, and substance use. Methods. Data were collected using a paper and pencil survey in the classroom setting. Three samples were aggregated to achieve a total sample of 8478 unique adolescents. Scales included measures of game use, game type, the Video game Addiction Test (VAT), depressive mood, negative self-esteem, loneliness, social anxiety, education performance, and use of cannabis, alcohol and nicotine (smoking). Results. Findings confirmed problematic gaming is most common amongst adolescent gamers who play multiplayer online games. Boys (60%) were more likely to play online games than girls (14%) and problematic gamers were more likely to be boys (5%) than girls (1%). High problematic gamers showed higher scores on depressive mood, loneliness, social anxiety, negative self-esteem, and self-reported lower school performance. Nicotine, alcohol, and cannabis using boys were almost twice more likely to report high PVG than non-users. Conclusions. It appears that online gaming in general is not necessarily associated with problems. However, problematic gamers do seem to play online games more often, and a small subgroup of gamers – specifically boys – showed lower psychosocial functioning and lower grades. Moreover, associations with alcohol, nicotine, and cannabis use are found. It would appear that problematic gaming is an undesirable problem for a small subgroup of gamers. The findings encourage further exploration of the role of psychoactive substance use in problematic gaming
- …
