2,085 research outputs found
Saccades to a remembered location elicit spatially specific activation in human retinotopic visual cortex
The possible impact upon human visual cortex from saccades to remembered target locations was investigated using functional magnetic resonance imaging (fMRI). A specific location in the upper-right or upper-left visual quadrant served as the saccadic target. After a delay of 2,400 msec, an auditory signal indicated whether to execute a saccade to that location (go trial) or to cancel the saccade and remain centrally fixated (no-go). Group fMRI analysis revealed activation specific to the remembered target location for executed saccades, in the contralateral lingual gyrus. No-go trials produced similar, albeit significantly reduced, effects. Individual retinotopic mapping confirmed that on go trials, quadrant-specific activations arose in those parts of ventral V1, V2, and V3 that coded the target location for the saccade, whereas on no-go trials, only the corresponding parts of V2 and V3 were significantly activated. These results indicate that a spatial-motor saccadic task (i.e., making an eye movement to a remembered location) is sufficient to activate retinotopic visual cortex spatially corresponding to the target location, and that this activation is also present (though reduced) when no saccade is executed. We discuss the implications of finding that saccades to remembered locations can affect early visual cortex, not just those structures conventionally associated with eye movements, in relation to recent ideas about attention, spatial working memory, and the notion that recently activated representations can be "refreshed" when needed
Pattern recognition, attention, and information bottlenecks in the primate visual system
In its evolution, the primate visual system has developed impressive capabilities for recognizing complex patterns in natural images. This process involves many stages of analysis and a variety of information processing strategies. This paper concentrates on the importance of 'information bottlenecks,' which restrict the amount of information that can be handled at different stages of analysis. These steps are crucial for reducing the overwhelming computational complexity associated with recognizing countless objects from arbitrary viewing angles, distances, and perspectives. The process of directed visual attention is an especially important information bottleneck because of its flexibility in determining how information is routed to high-level pattern recognition centers
Long Range Magnetic Order and the Darwin Lagrangian
We simulate a finite system of confined electrons with inclusion of the
Darwin magnetic interaction in two- and three-dimensions. The lowest energy
states are located using the steepest descent quenching adapted for velocity
dependent potentials. Below a critical density the ground state is a static
Wigner lattice. For supercritical density the ground state has a non-zero
kinetic energy. The critical density decreases with for exponential
confinement but not for harmonic confinement. The lowest energy state also
depends on the confinement and dimension: an antiferromagnetic cluster forms
for harmonic confinement in two dimensions.Comment: 5 figure
A Multi-Armed Bandit to Smartly Select a Training Set from Big Medical Data
With the availability of big medical image data, the selection of an adequate
training set is becoming more important to address the heterogeneity of
different datasets. Simply including all the data does not only incur high
processing costs but can even harm the prediction. We formulate the smart and
efficient selection of a training dataset from big medical image data as a
multi-armed bandit problem, solved by Thompson sampling. Our method assumes
that image features are not available at the time of the selection of the
samples, and therefore relies only on meta information associated with the
images. Our strategy simultaneously exploits data sources with high chances of
yielding useful samples and explores new data regions. For our evaluation, we
focus on the application of estimating the age from a brain MRI. Our results on
7,250 subjects from 10 datasets show that our approach leads to higher accuracy
while only requiring a fraction of the training data.Comment: MICCAI 2017 Proceeding
Principal Component Regression predicts functional responses across individuals
International audienceInter-subject variability is a major hurdle for neuroimaging group-level inference, as it creates complex image patterns that are not captured by standard analysis models and jeopardizes the sensitivity of statistical procedures. A solution to this problem is to model random subjects effects by using the redundant information conveyed by multiple imaging contrasts. In this paper, we introduce a novel analysis framework, where we estimate the amount of variance that is fit by a random effects subspace learned on other images; we show that a principal component regression estimator outperforms other regression models and that it fits a significant proportion (10% to 25%) of the between-subject variability. This proves for the first time that the accumulation of contrasts in each individual can provide the basis for more sensitive neuroimaging group analyzes
Generalized Robba rings
We prove that any projective coadmissible module over the locally analytic
distribution algebra of a compact -adic Lie group is finitely generated. In
particular, the category of coadmissible modules does not have enough
projectives. In the Appendix a "generalized Robba ring" for uniform pro-
groups is constructed which naturally contains the locally analytic
distribution algebra as a subring. The construction uses the theory of
generalized microlocalization of quasi-abelian normed algebras that is also
developed there. We equip this generalized Robba ring with a self-dual locally
convex topology extending the topology on the distribution algebra. This is
used to show some results on coadmissible modules.Comment: with an appendix by Peter Schneider; revised; new titl
Hormonal crises following receptor radionuclide therapy with the radiolabeled somatostatin analogue [177Lu-DOTA0,Tyr 3]octreotate
Introduction: Receptor radionuclide therapy is a promising treatment modality for patients with neuroendocrine tumors for whom alternative treatments are limited. The aim of this study was to investigate the incidence of hormonal crises after therapy with the radiolabeled somatostatin analogue [177Lu-DOTA0,Tyr3]octreotate (177Lu-octreotate). Materials and methods: All177Lu- octreotate treatments between January 2000 and January 2007 were investigated. Four hundred seventy-six patients with gastroenteropancreatic neuroendocrine tumors and three patients with metastatic pheochromocytoma were included fo
An allometric scaling relationship in the brain of preterm infants
Allometry has been used to demonstrate a power–law scaling relationship in the brain of premature born infants. Forty-nine preterm infants underwent neonatal MRI scans and neurodevelopmental testing at age 2. Measures of cortical surface area and total cerebral volume demonstrated a power–law scaling relationship (α = 1.27). No associations were identified between these measures and investigated clinical variables. Term equivalent cortical surface area and total cerebral volume measures and scaling exponents were not related to outcome. These findings confirm a previously reported allometric scaling relationship in the preterm brain, and suggest that scaling is not a sensitive indicator of aberrant cortical maturation
Experimental and Modeling Investigation of the Effectof H2S Addition to Methane on the Ignition and Oxidation at High Pressures
The
autoignition and oxidation behavior of CH<sub>4</sub>/H<sub>2</sub>S mixtures has been studied experimentally in a rapid compression
machine (RCM) and a high-pressure flow reactor. The RCM measurements
show that the addition of 1% H<sub>2</sub>S to methane reduces the
autoignition delay time by a factor of 2 at pressures ranging from
30 to 80 bar and temperatures from 930 to 1050 K. The flow reactor
experiments performed at 50 bar show that, for stoichiometric conditions,
a large fraction of H<sub>2</sub>S is already consumed at 600 K, while
temperatures above 750 K are needed to oxidize 10% methane. A detailed
chemical kinetic model has been established, describing the oxidation
of CH<sub>4</sub> and H<sub>2</sub>S as well as the formation and
consumption of organosulfuric species. Computations with the model
show good agreement with the ignition measurements, provided that
reactions of H<sub>2</sub>S and SH with peroxides (HO<sub>2</sub> and
CH<sub>3</sub>OO) are constrained. A comparison of the flow reactor
data to modeling predictions shows satisfactory agreement under stoichiometric
conditions, while at very reducing conditions, the model underestimates
the consumption of both H<sub>2</sub>S and CH<sub>4</sub>. Similar
to the RCM experiments, the presence of H<sub>2</sub>S is predicted
to promote oxidation of methane. Analysis of the calculations indicates
a significant interaction between the oxidation chemistry of H<sub>2</sub>S and CH<sub>4</sub>, but this chemistry is not well understood
at present. More work is desirable on the reactions of H<sub>2</sub>S and SH with peroxides (HO<sub>2</sub> and CH<sub>3</sub>OO) and
the formation and consumption of organosulfuric compounds
- …
