7,811 research outputs found

    DEVELOPMENT OF SIMPLIFIED METHOD OF ESTIMATION OF DEFORMATION PROCESSING OF CENTRAL ZONES OF ROLLOUT SECTION FROM CONTINUOUS COLLECTION IN ROLLING IN CALIBERS

    Get PDF
    Development of a simplified method of estimation of deformation processing of central zones of rollout section from continuous collection in rolling in calibers

    Detection of Giant Radio Pulses from the Pulsar PSR B0656+14

    Full text link
    Giant pulses (GPs) have been detected from the pulsar PSR B0656+14. A pulse that is more intense than the average pulse by a factor of 120 is encountered approximately once in 3000 observed periods of the pulsar. The peak flux density of the strongest pulse, 120 Jy, is a factor of 630 higher than that of the average pulse. The GP energy exceeds the energy of the average pulse by up to a factor of 110, which is comparable to that for other known pulsars with GPs, including the Crab pulsar and the millisecond pulsar PSR B1937+21. The giant pulses are a factor of 6 narrower than the average pulse and are clustered at the head of the average pulse. PSR B0656+14 along with PSR B0031-07, PSR B1112+50, and PSR J1752+2359 belong to a group of pulsars that differ from previously known ones in which GPs have been detected without any extremely strong magnetic field on the light cylinder.Comment: 10 pages, 3 figures, 1 table; originally published in Russian in Pis'ma Astron. Zh., 2006, v.32, 650; translated by George Rudnitskii; the English version will be appear in Astronomy Letter

    Detection of Giant Pulses from the Pulsar PSR B0031-07

    Full text link
    Giant pulses have been detected from the pulsar PSR B0031-07. A pulse with an intensity higher than the intensity of the average pulse by a factor of 50 or more is encountered approximately once per 300 observed periods. The peak flux density of the strongest pulse is 530 Jy, which is a factor of 120 higher than the peak flux density of the average pulse. The giant pulses are a factor of 20 narrower than the integrated profile and are clustered about its center.Comment: 7 pages, 2 figures, to appear in: Pis'ma v Astronomicheskii Zhurnal, 2004, v.30, No.4, and will be translated as: Astronomy Letters, v.30, No.

    Property (T)(T) for noncommutative universal lattices

    Full text link
    We establish a new spectral criterion for Kazhdan's property (T)(T) which is applicable to a large class of discrete groups defined by generators and relations. As the main application, we prove property (T)(T) for the groups ELn(R)EL_n(R), where n3n\geq 3 and RR is an arbitrary finitely generated associative ring. We also strengthen some of the results on property (T)(T) for Kac-Moody groups from a paper of Dymara and Januszkiewicz (Invent. Math 150 (2002)).Comment: 47 pages; final versio

    On the susceptibility function of piecewise expanding interval maps

    Full text link
    We study the susceptibility function Psi(z) associated to the perturbation f_t=f+tX of a piecewise expanding interval map f. The analysis is based on a spectral description of transfer operators. It gives in particular sufficient conditions which guarantee that Psi(z) is holomorphic in a disc of larger than one. Although Psi(1) is the formal derivative of the SRB measure of f_t with respect to t, we present examples satisfying our conditions so that the SRB measure is not Lipschitz.*We propose a new version of Ruelle's conjectures.* In v2, we corrected a few minor mistakes and added Conjectures A-B and Remark 4.5. In v3, we corrected the perturbation (X(f(x)) instead of X(x)), in particular in the examples from Section 6. As a consequence, Psi(z) has a pole at z=1 for these examples.Comment: To appear Comm. Math. Phy

    Instantaneous Radio Spectra of Giant Pulses from the Crab Pulsar from Decimeter to Decameter Wavelengths

    Get PDF
    The results of simultaneous multifrequency observations of giant radio pulses from the Crab pulsar, PSR B0531+21, at 23, 111, and 600 MHz are presented and analyzed. Giant pulses were detected at a frequency as low as 23 MHz for the first time. Of the 45 giant pulses detected at 23 MHz, 12 were identified with counterparts observed simultaneously at 600 MHz. Of the 128 giant pulses detected at 111 MHz, 21 were identified with counterparts observed simultaneously at 600 MHz. The spectral indices for the power-law frequency dependence of the giant-pulse energies are from -3.1 to -1.6. The mean spectral index is -2.7 +/- 0.1 and is the same for both frequency combinations (600-111 MHz and 600-23 MHz). The large scatter in the spectral indices of the individual pulses and the large number of unidentified giant pulses suggest that the spectra of the individual giant pulses do not actually follow a simple power law. The observed shapes of the giant pulses at all three frequencies are determined by scattering on interstellar plasma irregularities. The scatter broadening of the pulses and its frequency dependence were determined as tau_sc=20*(f/100)^(-3.5 +/- 0.1) ms, where the frequency f is in MHz.Comment: 13 pages, 1 figure, 1 table (originally published in Russian in Astronomicheskii Zhurnal, 2006, vol. 83, No. 7, pp. 630-637), translated by Georgii Rudnitski

    Sawja: Static Analysis Workshop for Java

    Get PDF
    Static analysis is a powerful technique for automatic verification of programs but raises major engineering challenges when developing a full-fledged analyzer for a realistic language such as Java. This paper describes the Sawja library: a static analysis framework fully compliant with Java 6 which provides OCaml modules for efficiently manipulating Java bytecode programs. We present the main features of the library, including (i) efficient functional data-structures for representing program with implicit sharing and lazy parsing, (ii) an intermediate stack-less representation, and (iii) fast computation and manipulation of complete programs

    Perturbation theory for self-gravitating gauge fields I: The odd-parity sector

    Full text link
    A gauge and coordinate invariant perturbation theory for self-gravitating non-Abelian gauge fields is developed and used to analyze local uniqueness and linear stability properties of non-Abelian equilibrium configurations. It is shown that all admissible stationary odd-parity excitations of the static and spherically symmetric Einstein-Yang-Mills soliton and black hole solutions have total angular momentum number =1\ell = 1, and are characterized by non-vanishing asymptotic flux integrals. Local uniqueness results with respect to non-Abelian perturbations are also established for the Schwarzschild and the Reissner-Nordstr\"om solutions, which, in addition, are shown to be linearly stable under dynamical Einstein-Yang-Mills perturbations. Finally, unstable modes with =1\ell = 1 are also excluded for the static and spherically symmetric non-Abelian solitons and black holes.Comment: 23 pages, revtex, no figure

    On the Detectability of the Hydrogen 3-cm Fine Structure Line from the EoR

    Full text link
    A soft ultraviolet radiation field, 10.2 eV < E <13.6 eV, that permeates neutral intergalactic gas during the Epoch of Reionization (EoR) excites the 2p (directly) and 2s (indirectly) states of atomic hydrogen. Because the 2s state is metastable, the lifetime of atoms in this level is relatively long, which may cause the 2s state to be overpopulated relative to the 2p state. It has recently been proposed that for this reason, neutral intergalactic atomic hydrogen gas may be detected in absorption in its 3-cm fine-structure line (2s_1/2 -> 2p_3/2) against the Cosmic Microwave Background out to very high redshifts. In particular, the optical depth in the fine-structure line through neutral intergalactic gas surrounding bright quasars during the EoR may reach tau~1e-5. The resulting surface brightness temperature of tens of micro K (in absorption) may be detectable with existing radio telescopes. Motivated by this exciting proposal, we perform a detailed analysis of the transfer of Lyman beta,gamma,delta,... radiation, and re-analyze the detectability of the fine-structure line in neutral intergalactic gas surrounding high-redshift quasars. We find that proper radiative transfer modeling causes the fine-structure absorption signature to be reduced tremendously to tau< 1e-10. We therefore conclude that neutral intergalactic gas during the EoR cannot reveal its presence in the 3-cm fine-structure line to existing radio telescopes.Comment: 7 pages, 4 figures, MNRAS in press; v2. some typos fixe
    corecore