7,811 research outputs found
DEVELOPMENT OF SIMPLIFIED METHOD OF ESTIMATION OF DEFORMATION PROCESSING OF CENTRAL ZONES OF ROLLOUT SECTION FROM CONTINUOUS COLLECTION IN ROLLING IN CALIBERS
Development of a simplified method of estimation of deformation
processing of central zones of rollout section from continuous collection in rolling in
calibers
Detection of Giant Radio Pulses from the Pulsar PSR B0656+14
Giant pulses (GPs) have been detected from the pulsar PSR B0656+14. A pulse
that is more intense than the average pulse by a factor of 120 is encountered
approximately once in 3000 observed periods of the pulsar. The peak flux
density of the strongest pulse, 120 Jy, is a factor of 630 higher than that of
the average pulse. The GP energy exceeds the energy of the average pulse by up
to a factor of 110, which is comparable to that for other known pulsars with
GPs, including the Crab pulsar and the millisecond pulsar PSR B1937+21. The
giant pulses are a factor of 6 narrower than the average pulse and are
clustered at the head of the average pulse. PSR B0656+14 along with PSR
B0031-07, PSR B1112+50, and PSR J1752+2359 belong to a group of pulsars that
differ from previously known ones in which GPs have been detected without any
extremely strong magnetic field on the light cylinder.Comment: 10 pages, 3 figures, 1 table; originally published in Russian in
Pis'ma Astron. Zh., 2006, v.32, 650; translated by George Rudnitskii; the
English version will be appear in Astronomy Letter
Detection of Giant Pulses from the Pulsar PSR B0031-07
Giant pulses have been detected from the pulsar PSR B0031-07. A pulse with an
intensity higher than the intensity of the average pulse by a factor of 50 or
more is encountered approximately once per 300 observed periods. The peak flux
density of the strongest pulse is 530 Jy, which is a factor of 120 higher than
the peak flux density of the average pulse. The giant pulses are a factor of 20
narrower than the integrated profile and are clustered about its center.Comment: 7 pages, 2 figures, to appear in: Pis'ma v Astronomicheskii Zhurnal,
2004, v.30, No.4, and will be translated as: Astronomy Letters, v.30, No.
Property for noncommutative universal lattices
We establish a new spectral criterion for Kazhdan's property which is
applicable to a large class of discrete groups defined by generators and
relations. As the main application, we prove property for the groups
, where and is an arbitrary finitely generated
associative ring. We also strengthen some of the results on property for
Kac-Moody groups from a paper of Dymara and Januszkiewicz (Invent. Math 150
(2002)).Comment: 47 pages; final versio
On the susceptibility function of piecewise expanding interval maps
We study the susceptibility function Psi(z) associated to the perturbation
f_t=f+tX of a piecewise expanding interval map f. The analysis is based on a
spectral description of transfer operators. It gives in particular sufficient
conditions which guarantee that Psi(z) is holomorphic in a disc of larger than
one. Although Psi(1) is the formal derivative of the SRB measure of f_t with
respect to t, we present examples satisfying our conditions so that the SRB
measure is not Lipschitz.*We propose a new version of Ruelle's conjectures.* In
v2, we corrected a few minor mistakes and added Conjectures A-B and Remark 4.5.
In v3, we corrected the perturbation (X(f(x)) instead of X(x)), in particular
in the examples from Section 6. As a consequence, Psi(z) has a pole at z=1 for
these examples.Comment: To appear Comm. Math. Phy
Instantaneous Radio Spectra of Giant Pulses from the Crab Pulsar from Decimeter to Decameter Wavelengths
The results of simultaneous multifrequency observations of giant radio pulses
from the Crab pulsar, PSR B0531+21, at 23, 111, and 600 MHz are presented and
analyzed. Giant pulses were detected at a frequency as low as 23 MHz for the
first time. Of the 45 giant pulses detected at 23 MHz, 12 were identified with
counterparts observed simultaneously at 600 MHz. Of the 128 giant pulses
detected at 111 MHz, 21 were identified with counterparts observed
simultaneously at 600 MHz. The spectral indices for the power-law frequency
dependence of the giant-pulse energies are from -3.1 to -1.6. The mean spectral
index is -2.7 +/- 0.1 and is the same for both frequency combinations (600-111
MHz and 600-23 MHz). The large scatter in the spectral indices of the
individual pulses and the large number of unidentified giant pulses suggest
that the spectra of the individual giant pulses do not actually follow a simple
power law. The observed shapes of the giant pulses at all three frequencies are
determined by scattering on interstellar plasma irregularities. The scatter
broadening of the pulses and its frequency dependence were determined as
tau_sc=20*(f/100)^(-3.5 +/- 0.1) ms, where the frequency f is in MHz.Comment: 13 pages, 1 figure, 1 table (originally published in Russian in
Astronomicheskii Zhurnal, 2006, vol. 83, No. 7, pp. 630-637), translated by
Georgii Rudnitski
Sawja: Static Analysis Workshop for Java
Static analysis is a powerful technique for automatic verification of
programs but raises major engineering challenges when developing a full-fledged
analyzer for a realistic language such as Java. This paper describes the Sawja
library: a static analysis framework fully compliant with Java 6 which provides
OCaml modules for efficiently manipulating Java bytecode programs. We present
the main features of the library, including (i) efficient functional
data-structures for representing program with implicit sharing and lazy
parsing, (ii) an intermediate stack-less representation, and (iii) fast
computation and manipulation of complete programs
Perturbation theory for self-gravitating gauge fields I: The odd-parity sector
A gauge and coordinate invariant perturbation theory for self-gravitating
non-Abelian gauge fields is developed and used to analyze local uniqueness and
linear stability properties of non-Abelian equilibrium configurations. It is
shown that all admissible stationary odd-parity excitations of the static and
spherically symmetric Einstein-Yang-Mills soliton and black hole solutions have
total angular momentum number , and are characterized by
non-vanishing asymptotic flux integrals. Local uniqueness results with respect
to non-Abelian perturbations are also established for the Schwarzschild and the
Reissner-Nordstr\"om solutions, which, in addition, are shown to be linearly
stable under dynamical Einstein-Yang-Mills perturbations. Finally, unstable
modes with are also excluded for the static and spherically
symmetric non-Abelian solitons and black holes.Comment: 23 pages, revtex, no figure
On the Detectability of the Hydrogen 3-cm Fine Structure Line from the EoR
A soft ultraviolet radiation field, 10.2 eV < E <13.6 eV, that permeates
neutral intergalactic gas during the Epoch of Reionization (EoR) excites the 2p
(directly) and 2s (indirectly) states of atomic hydrogen. Because the 2s state
is metastable, the lifetime of atoms in this level is relatively long, which
may cause the 2s state to be overpopulated relative to the 2p state. It has
recently been proposed that for this reason, neutral intergalactic atomic
hydrogen gas may be detected in absorption in its 3-cm fine-structure line
(2s_1/2 -> 2p_3/2) against the Cosmic Microwave Background out to very high
redshifts. In particular, the optical depth in the fine-structure line through
neutral intergalactic gas surrounding bright quasars during the EoR may reach
tau~1e-5. The resulting surface brightness temperature of tens of micro K (in
absorption) may be detectable with existing radio telescopes. Motivated by this
exciting proposal, we perform a detailed analysis of the transfer of Lyman
beta,gamma,delta,... radiation, and re-analyze the detectability of the
fine-structure line in neutral intergalactic gas surrounding high-redshift
quasars. We find that proper radiative transfer modeling causes the
fine-structure absorption signature to be reduced tremendously to tau< 1e-10.
We therefore conclude that neutral intergalactic gas during the EoR cannot
reveal its presence in the 3-cm fine-structure line to existing radio
telescopes.Comment: 7 pages, 4 figures, MNRAS in press; v2. some typos fixe
- …
