1,120 research outputs found
The synergistic effect between positivity, socio-demographic factors and smoking cessation: results of a cohort study
OBJECTIVE: To examine the extent to which a effect does exist between Positivity (POS), smoking and socio-demographic factors in determining quitting smoking in subjects participating in a Group Counselling Program (GCP) for smoking cessation.METHODS: 481 subjects were contacted through a telephone call. A logistic regression analysis was carried out. Possible interaction between sociodemographic variables and POS level was tested using the Synergism Index (SI).RESULTS: For individuals with a POS level over or equal to 3.4 the odds of being smoker was significantly higher among females (OR = 1.55), who smoked at home (OR = 2.16) and lower if there had children at home (OR = 0.53). For individuals with a POS level under 3.4, the only significant variable associated with smoking was beinga female (OR = 2.58). As far concerns the synergistic effect between the variables considered does exist between POS levels and having children at home (SI=1.13) and female gender (SI = 2.8).CONCLUSIONS: The synergistic effect between POS and sociodemographic factors adds evidence on the use of POS as possible determinants of individual happiness
Recommended from our members
Synthetic collagen fascicles for the regeneration of tendon tissue.
The structure of an ideal scaffold for tendon regeneration must be designed to provide a mechanical, structural and chemotactic microenvironment for native cellular activity to synthesize functional (i.e. load bearing) tissue. Collagen fibre scaffolds for this application have shown some promise to date, although the microstructural control required to mimic the native tendon environment has yet to be achieved allowing for minimal control of critical in vivo properties such as degradation rate and mass transport. In this report we describe the fabrication of a novel multi-fibre collagen fascicle structure, based on type-I collagen with failure stress of 25-49 MPa, approximating the strength and structure of native tendon tissue. We demonstrate a microscopic fabrication process based on the automated assembly of type-I collagen fibres with the ability to produce a controllable fascicle-like, structural motif allowing variable numbers of fibres per fascicle. We have confirmed that the resulting post-fabrication type-I collagen structure retains the essential phase behaviour, alignment and spectral characteristics of aligned native type-I collagen. We have also shown that both ovine tendon fibroblasts and human white blood cells in whole blood readily infiltrate the matrix on a macroscopic scale and that these cells adhere to the fibre surface after seven days in culture. The study has indicated that the synthetic collagen fascicle system may be a suitable biomaterial scaffold to provide a rationally designed implantable matrix material to mediate tendon repair and regeneration
Spatial averaging and apparent acceleration in inhomogeneous spaces
As an alternative to dark energy that explains the observed acceleration of
the universe, it has been suggested that we may be at the center of an
inhomogeneous isotropic universe described by a Lemaitre-Tolman-Bondi (LTB)
solution of Einstein's field equations. To test this possibility, it is
necessary to solve the null geodesics. In this paper we first give a detailed
derivation of a fully analytical set of differential equations for the radial
null geodesics as functions of the redshift in LTB models. As an application we
use these equaions to show that a positive averaged acceleration obtained
in LTB models through spatial averaging can be incompatible with cosmological
observations. We provide examples of LTB models with positive which fail
to reproduce the observed luminosity distance . Since the apparent
cosmic acceleration is obtained from fitting the observed luminosity
distance to a FLRW model we conclude that in general a positive in LTB
models does not imply a positive .Comment: 16 pages, 12 figures. Explicit derivation of the fully analytical
null geodesic equations has been added. Published in GR
The durability of carbon fiber/epoxy composites under hydrothermal ageing
Studies on fibre reinforced composites are now receiving greater attention. Industrial applications have been successful in areas like aerospace, automobile, marine, construction and sporting goods. The first generation of epoxy resins for use in carbon fibre composites are able to achieve optimized high stiffness modules and high heat resistance by a high crosslink density, reached through thermal curing. However, these formulations can be very toxic and brittle with low crack resistance, which was a major disadvantage for structural applications. In the last years the use of ionizing radiation as alternative to thermal curing has been proposed as an environmentally friendly process. Furthermore, in order to enhance toughness mechanical requirements for their applications, the formulation generally consists of blends of epoxy resins and engineering thermoplastics. In terms of durability (service life and reliability), in these materials it depends on different environmental conditions (temperature, moisture, etc.), and it is very important to know how their properties are modified after the exposure to different temperature and moisture absorption cycles. In this work carbon fibre composites produced by ionizing radiation induced curing of the epoxy based matrices have been subjected to thermal and moisture absorption ageing and the influence of these treatments on the thermal and mechanical properties has been investigated through dynamic mechanical thermal analysis and mechanical fracture toughness tests
A Web-based Architecture for Interoperability of Lexical Resources
In this paper we present aWeb Service Architecture for managing high level interoperability of Language Resources (LRs) by means of a Service Oriented Architecture (SOA) and the use of ISO standards, such as ISO LMF. We propose a layered architecture which separates the management of legacy resources (data collection) from data aggregation (workflow) and data access (user requests). We provide a case study to demonstrate how the proposed architecture is capable of managing data exchange among different lexical services in a coherent way and show how the use of a lexical standard becomes of primary importance when a protocol of interoperability is defined
Corrections to the apparent value of the cosmological constant due to local inhomogeneities
Supernovae observations strongly support the presence of a cosmological
constant, but its value, which we will call apparent, is normally determined
assuming that the Universe can be accurately described by a homogeneous model.
Even in the presence of a cosmological constant we cannot exclude nevertheless
the presence of a small local inhomogeneity which could affect the apparent
value of the cosmological constant. Neglecting the presence of the
inhomogeneity can in fact introduce a systematic misinterpretation of
cosmological data, leading to the distinction between an apparent and true
value of the cosmological constant. We establish the theoretical framework to
calculate the corrections to the apparent value of the cosmological constant by
modeling the local inhomogeneity with a solution. Our assumption
to be at the center of a spherically symmetric inhomogeneous matter
distribution correspond to effectively calculate the monopole contribution of
the large scale inhomogeneities surrounding us, which we expect to be the
dominant one, because of other observations supporting a high level of isotropy
of the Universe around us.
By performing a local Taylor expansion we analyze the number of independent
degrees of freedom which determine the local shape of the inhomogeneity, and
consider the issue of central smoothness, showing how the same correction can
correspond to different inhomogeneity profiles. Contrary to previous attempts
to fit data using large void models our approach is quite general. The
correction to the apparent value of the cosmological constant is in fact
present for local inhomogeneities of any size, and should always be taken
appropriately into account both theoretically and observationally.Comment: 16 pages,new sections added analyzing central smoothness and accuracy
of the Taylor expansion approach, Accepted for publication by JCAP. An essay
based on this paper received honorable mention in the 2011 Essay Context of
the Gravity Research Foundatio
Can the cosmological constant be mimicked by smooth large-scale inhomogeneities for more than one observable?
As an alternative to dark energy it has been suggested that we may be at the
center of an inhomogeneous isotropic universe described by a
Lemaitre-Tolman-Bondi (LTB) solution of Einstein's field equations. In order to
test such an hypothesis we calculate the low redshift expansion of the
luminosity distance and the redshift spherical shell mass density
for a central observer in a LTB space without cosmological constant and
show how they cannot fit the observations implied by a model if
the conditions to avoid a weak central singularity are imposed, i.e. if the
matter distribution is smooth everywhere. Our conclusions are valid for any
value of the cosmological constant, not only for as
implied by previous proofs that has to be positive in a smooth LTB
space, based on considering only the luminosity distance.
The observational signatures of smooth LTB matter dominated models are
fundamentally different from the ones of models not only because
it is not possible to reproduce a negative apparent central deceleration
, but because of deeper differences in their space-time geometry
which make impossible the inversion problem when more than one observable is
considered, and emerge at any redshift, not only for .Comment: 18 pages, corrected a typo in the definition of the energy density
which doesn't change the conclusion, references adde
Effects of inhomogeneities on apparent cosmological observables: "fake" evolving dark energy
Using the exact Lemaitre-Bondi-Tolman solution with a non-vanishing
cosmological constant , we investigate how the presence of a local
spherically-symmetric inhomogeneity can affect apparent cosmological
observables, such as the deceleration parameter or the effective equation of
state of dark energy (DE), derived from the luminosity distance under the
assumption that the real space-time is exactly homogeneous and isotropic. The
presence of a local underdensity is found to produce apparent phantom behavior
of DE, while a locally overdense region leads to apparent quintessence
behavior. We consider relatively small large scale inhomogeneities which today
are not linear and could be seeded by primordial curvature perturbations
compatible with CMB bounds. Our study shows how observations in an
inhomogeneous CDM universe with initial conditions compatible with the
inflationary beginning, if interpreted under the wrong assumption of
homogeneity, can lead to the wrong conclusion about the presence of "fake"
evolving dark energy instead of .Comment: 22 pages, 19 figures,Final version to appear in European Physical
Journal
Fabrication of endothelial cell-laden carrageenan microfibers for microvascularized bone tissue engineering applications
ecent achievements in the area of tissue engineering (TE) have enabled the development of three-dimensional (3D) cell-laden hydrogels as in vitro platforms that closely mimic the 3D scenario found in native tissues. These platforms are extensively used to evaluate cellular behavior, cell-cell interactions, and tissue-like formation in highly defined settings. In this study, we propose a scalable and flexible 3D system based on microsized hydrogel fibers that might be used as building blocks for the establishment of 3D hydrogel constructs for vascularized bone TE applications. For this purpose, chitosan (CHT) coated κ-carrageenan (κ-CA) microfibers were developed using a two-step procedure involving ionotropic gelation (for the fiber formation) of κ-CA and its polyelectrolyte complexation with CHT (for the enhancement of fiber stability). The performance of the obtained fibers was assessed regarding their swelling and stability profiles, as well as their ability to carry and, subsequently, promote the outward release of microvascular-like endothelial cells (ECs), without compromising their viability and phenotype. Finally, the possibility of assembling and integrating these cell-laden fibers within a 3D hydrogel matrix containing osteoblast-like cells was evaluated. Overall, the obtained results demonstrate the suitability of the microsized κ-CA fibers to carry and deliver phenotypically apt microvascular-like ECs. Furthermore, it is shown that it is possible to assemble these cell-laden microsized fibers into 3D heterotypic hydrogels constructs. This in vitro 3D platform provides a versatile approach to investigate the interactions between multiple cell types in controlled settings, which may open up novel 3D in vitro culture techniques to better mimic the complexity of tissues.Authors thank the Portuguese Foundation for Science and Technology (FCT) for the personal grants SFRH/BD/42968/2008 through the MIT-Portugal Program (SMM) and SFRH/BD/64070/2009 (EGP). The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no REGPOT-CT2012-316331-POLARIS and MIT/ECE/0047/2009 project
- …
