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Abstract 

The structure of an ideal scaffold for tendon regeneration must be designed to provide a 

mechanical, structural and chemotactic microenvironment for native cellular activity to 

synthesise functional (i.e. load bearing) tissue. Collagen fibre scaffolds for this application 

have shown some promise to date, although the microstructural control required to mimic 

the native tendon environment has yet to be achieved allowing for minimal control of 

critical in vivo properties such as degradation rate and mass transport.  In this report we 

describe the fabrication of a novel multi-fibre collagen fascicle structure, based on type-I 

collagen with failure stress of 25 – 49 MPa, approximating the strength and structure of 

native tendon tissue. We demonstrate a microscopic fabrication process based on the 

automated assembly of type-I collagen fibres with the ability to produce a controllable 

fascicle-like, structural motif allowing variable numbers of fibres per fascicle. We have 

confirmed that the resulting post-fabrication type-I collagen structure retains the essential 

phase behaviour, alignment and spectral characteristics of aligned native type-I collagen. We 

have also shown that both ovine tendon fibroblasts and human white blood cells in whole 

blood readily infiltrate the matrix on a macroscopic scale and that these cells adhere to the 

fibre surface after seven days in culture. The study has indicated that the synthetic collagen 

fascicle (SCF) system may be a suitable biomaterial scaffold to provide a rationally-designed 

implantable matrix material to mediate tendon repair and regeneration. 

 

1. Introduction 

 

Regeneration of damaged tendon tissue remains an underserved medical need for the field 

of orthopaedics. These highly specialised and aligned tissues provide the structural support 

necessary in order to maintain appropriate biomechanical function in all joints of the human 

body. The properties of ligament and tendon vary substantially by anatomical location, with 

concomitant variation in structure and configuration. However, an invariant feature of these 

tissues is that they are substantially oriented type-I collagen fibre structures, providing load 

bearing and force transfer parallel to the direction of orientation. Once damaged, tendons 

and ligaments lose their ability to protect the joint from biomechanical loading patterns 

which can damage articular cartilage and may expedite the onset of degenerative changes 

such as osteoarthritis [1]. Furthermore, the loss of function and pain associated with injuries 

to tendon carries a significant societal burden via patient morbidity, notably in the Achilles 
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[2] and shoulder rotator cuff tendons [3]. Current approaches to the surgical treatment of 

tendon injuries rely on fixation devices such as bone-anchoring sutures and biomaterial 

grafting in combination with various suture techniques to re-attach tissues and restore 

function to the damaged area. However, bone anchors and (bio)synthetic grafting are 

limited to providing a purely mechanical solution to what is often a biological problem, with 

degenerated  or ruptured tendon tissue often found either prior to, or as a result of, a tendon 

injury [4]. However, autografting and muscular transfers are limited by a noticeable 

morbidity, and allografting may cause immunoreactions and spread infective diseases. 

Hence structural repairs often fail: for example in the case of massive rotator cuff repairs an 

estimated 13-68% will re-rupture [5 and references therein]. Therefore, the ability to provide 

a biological augmentation, which enhances the quality of the repaired tendon tissue in 

concert with the structural repair, is a promising methodology by which to reduce the 

significant problem of longevity in the current repair modalities. A multitude of approaches 

have been proposed towards the overall goal of regenerating tendon tissue, with 

combinations of biological species such as growth factors, stem cells, blood concentrates 

both with and without biomaterials all attracting significant current research interest.   

 

Clinical attempts to provide a biomaterial scaffold that enables the recapitulation of tendon 

tissue have, to date, focussed on use of decellularised extra-cellular matrix materials (ECM) 

[6]. However, these materials are unlike the tissues they aim to regenerate, being non-axially 

oriented and retaining allogenic or xenogenic epitopes [7] and furthermore, are 

mechanically weaker than human tendon or ligament tissue. Few pre-clinical studies have 

shown significant performance advantages compared to non-augmented controls and some 

clinical studies have been abandoned due to post-operative complications [8]. Various non-

degradable polymer fibre systems have been investigated as mechanical supports for soft 

tissue. However, their usage has also been limited owing to long-term complications 

associated with mechanical degradation and production of wear debris, which ultimately 

have resulted in numerous failures such as, in the anterior cruciate ligament (ACL) site [9]. 

Hence there remains a significant unmet clinical need for a degradable biomaterial that can 

be shown to mediate the replacement of damaged tendon with native-type tissue that can 

play a structural role in support of the joint. 

 

Reconstituted type-I collagen fibres have attracted interest as scaffolds for the regeneration 

of tendon tissue owing to their structural similarity to native tissues [10]. Such collagen fibre 

scaffolds have been used to repair tendon tissue in vivo in a number of systems, including 

rabbit Achilles tendon and anterior cruciate ligament [11]. The initial mechanical properties 

of the scaffolds are of importance for two reasons, firstly for primary surgical fixation and 

secondly to provide mechanical substitution or augmentation (i.e. functional tissue 

engineering [12]). In the case of tendon tissue, the substitutive requirement is substantially 

more demanding than the augmentative, with tendon tissue substitution typically requiring 

break stresses of > 50 MPa [13], whereas augmentation can be achieved with break stresses 

an order of magnitude lower.  

 

The crosslinking chemistries for collagen biomaterials have been extensively investigated 

and a recent study has compared the mechanical properties achieved by numerous 

approaches, finding significant deviation from previously reported values [14]. This 

deviation highlights the effect of collagen source, preparation/purification conditions and 
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the various process steps such as post-extrusion stretching [15]. Fibrillogenesis may also 

have a significant effect on the final mechanical properties and biological properties of 

collagen fibres [16,17]. Furthermore, crosslinking conditions and associated denaturation of 

the collagen structure have a significant effect of the longevity of mechanical properties in 

proteolytic biological environments [18]. Collagen fibres bioscaffolds have yet to find clinical 

application, possibly due to the limited control over critical in vivo performance 

characteristics, such as degradation rate mechanical properties and mass transport that 

enables tailoring for particular tissues. We have begun addressing this limitation by 

designing a novel biomaterial scaffold which replicates the structure of tendon tissue [19] 

with a biomimetic synthetic collagen fascicle (SCF) structure. We hypothesise that this 

structure will provide the necessary structural and chemotactic signals to cells infiltrating 

the scaffold based not only on the structure of the constituent fibre but also on the fascicle 

assembly itself. Furthermore, we postulate that the fascicle structure per se will provide a 

templating effect of the synthesis of new matrix that will provide long-term benefit in the 

deposition of neo-tendon tissue. 

 

In this report we describe a microscopic assembly technique to fabricate a synthetic collagen 

fascicle, which represents a novel approach to creating a tendon-mimetic type-I collagen 

fibre scaffold. We selected carbodiimide crosslinking chemistry for this study based on its 

known biocompatibility and moderate strengthening effect. In addition, we added a 

secondary diepoxide crosslinker, which was used to further enhance mechanical properties 

by utilising non-proximate nucleophilic groups that may not have been accessible to the 

zero-length carbodiimide coupling reaction.  As has previously been reported by our group 

[20] we propose that control over mechanical strength, degradation rate and chemotactic 

signalling of the scaffold can be used to rationally design a synthetic collagen fascicle that 

provides an ideal microenvironment for tendon regeneration.   

 

2. Materials and Methods 

 

2.1. Synthetic Collagen Fascicle Fabrication 

 

Collagen Preparation: Acid swollen type-I collagen from bovine corium (Devro Medical, 

Glasgow, UK) was dispersed at 6 mg mL-1 in 2 mM HCl for at least 15 hours, prior to being 

blended for four minutes on full power using a blender (Kenwood, Multi-pro). The gel 

temperature did not exceed 25°C. The collagen gel was then degassed at 20 mTorr and 

stored in 30 mL syringes at 4°C for up to two weeks. Collagen Fibre Extrusion: The collagen 

gel was extruded from a 0.51 mm microbore tubing at 0.3 mL min-1 using a syringe pump 

(Chemxy fusion 200, KR Analytical, Cheshire, UK) into a stainless steel bath containing 

“fibre formation buffer” (FFB), which consisted of phosphate buffered saline (PBS) and 20% 

w/v poly(ethylene glycol) (PEG) Mw ~ 8000 (Sigma-Aldrich, Dorset, UK) at 37°C. The fibre 

was incubated for at least five minutes in FFB to allow coagulation and partial fibrillogenesis 

to occur [21]. Synthetic Collagen Fascicle Fabrication: The fibre was then wound onto a 

spool using a custom-built automated system that utilised a rotating and translating spool 

(Figure 1). To produce a synthetic collagen fascicle scaffold, collagen/PEG fibres were 
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wound in a multiple-fibre over-layer structure to produce an assembly, comprising a 

controlled number of separate strands. This allowed the fibre assembly to be incubated and 

dried overnight, thus allowing the nascent fibre to continue the fibrillogenesis process at 

increasing PEG concentrations during the drying phase. The final dried assembly was a 

collagen/PEG composite (confirmed by FTIR). The fascicle assembly was air dried overnight 

to adhere the fascicle structures, which remained assembled for the entire fabrication 

process. The individual fibres were visible in the final dried assembly. Crosslinking: The 

dried collagen/PEG composite was simultaneously crosslinked and washed on the spool in 

an 80% acetone/water solution, which performed two functions: firstly to crosslink the 

collagen component and secondly to remove the PEG component. The assembly was then 

crosslinked in either: (i) A solution of 25 mM EDC and 12.5 mM NHS in 80% acetone/PBS for 

two hours or (ii) A solution of 25 mM EDC and 12.5 mM NHS in 80% acetone/PBS for two 

hours followed by incubation in a solution of 1% (v/v) ethyleneglycol diglycidylether 

(EGDE) in PBS for five days. Final washing: After crosslinking, the assembly was washed 

on the spool with PBS for 2 x 30 minutes and ultra-high purity water (R > 18 MΩ) for 2 x 30 

minutes. The hydrated and crosslinked assembly was then air dried overnight, before being 

manually detached from the spool. Removal of PEG was confirmed via both differential 

scanning calorimetry and Fourier transform infra red spectroscopy in comparison with 

unwashed controls (data not shown). The dried assembly was then sterilised using -

irradiation at 25 kGy. 

 

2.2. Physical Characterisation 

 

Mechanical Testing: The extruded synthetic collagen fascicles assemblies were hydrated in 

PBS overnight at 22°C and mechanically tested using an Instron 3343 Universal testing 

machine (Instron, High Wycombe, UK) with flat face contact grips. The scaffolds were tested 

at 10 mm min-1 and all scaffolds failed within the body of the implant and not at the grips. 

The scaffolds were measured using a micrometer to determine the grip to grip distance. The 

individual fibres were tested using fibre-specific grips (Instron) and were hydrated in PBS 

overnight prior to testing. Any fibres that failed at the grips were excluded from the sample. 

The individual fibres were obtained from the synthetic collagen fascicles. Mechanical testing 

was performed immediately after immersion in PBS to minimise the effect of drying on the 

fibre mechanical properties. Fibre diameter was determined with the fibres hydrated in a 

small volume (~100 µL) of PBS using a calibrated optical microscope, 3-5 diameters were 

measured per fibre and averaged. Polarised Optical Microscopy: Microscopy was 

performed using collagen fibres and scaffolds which were hydrated in PBS overnight and 

placed on a glass cover slip. The microscope used was a L2000B HTG (GT Vision, Suffolk, 

UK). Differential Scanning Calorimetry (DSC): DSC was carried out using a TA 

Instruments Q2000 DSC.  Dry samples (with mass between 2 and 5 mg) were placed in 

aluminium pans (not hermetically sealed).  The samples were equilibrated at 5°C and then 

heated at 10°C/min to 250°C. Fourier Transform Infra-red Spectroscopy (FTIR). FTIR 

studies were carried out using a Bruker Tensor 27 Infrared Spectrometer with a diamond 

ATR crystal.  Scans were carried out from 4000 to 550 cm-1, with a resolution of 8 cm-1, and 16 

scans were averaged to produce the spectra. Small Angle X-ray Scattering (SAXS).  Scans 

were carried out using a Bruker Nanostar, with a sample-to-detector distance of 106 cm.  
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Scans needed to be carried out for 10 000 seconds, due to low intensities.  A background 

correction was carried out, taking into account the sample transmission (measured using a 

glassy carbon sample). Scanning electron microscopy (SEM). Synthetic collagen fascicles 

were sputter-coated with a thin layer of gold (20 mA for 2 minutes) and examined using a 

JEOL 820 SEM. 

2.3. Biological Characterisation 

Tendon fibroblast Cell Culture. Patellar tendon tissue was harvested in a sterile fashion 

from sheep and washed 3 times in fresh DMEM supplemented with 10% fetal calf serum 

(FCS), 2 mM glutamine, 100 IU/ml penicillin, 100 ug/mL streptomycin and 10 ug/mL 

gentamicin (complete DMEM). The tissue was dissected and finely minced and 

approximately 5 g of wet weight of tissue was put into a 175 mL flask, to which was added 

50 mL 0.2% collagenase 1A (Sigma) in supplemented DMEM. The tissue was incubated at 

37°C with shaking for 2-3 hours, by which time most of the tendon had dissolved into a 

thick cell suspension. This suspension was spun at 1500 rpm for 5 minutes and the cells 

washed twice in fresh medium before plating in 175 cm3 flasks. Cells were allowed to adhere 

for 2-3 days, after which the medium was changed. Cells were trypsinized, re-suspended 

and re-plated in 175 cm3 flasks in supplemented DMEM, grown to confluence and used at 

the third passage. Blood Infiltration: About 100 six-fibre synthetic collagen fascicles were 

extruded, dried, crosslinked, placed in parallel and sutured with 1-0 nylon thread every 1 

cm and then cut to size. Bundles of fibres (1 cm long) were vertically placed under tension 

into a sterilized cryosectioning cube. Samples were rinsed three times in sterile PBS. A blood 

sample was taken from a healthy human donor and immediately poured into the cryo-

sectioning cubes without anticoagulant. 3 mL blood was poured into each cube so as to 

cover completely the bundle. Samples were then placed into the incubator for 24 h. After 24 

h, the day 1 samples were harvested and the day 3 and day 7 samples were aspirated to 

remove the serum which had separated from the blood clot, and complete DMEM was 

added so as to completely cover the bundles. The medium was renewed on the third day. 

On the day of the harvest, the serum (day 1) or medium (day 3 and day 7) was aspirated and 

OCT compound was poured into the cryosectioning cubes. As the clot was contracted onto 

the bundle at the centre of the cube, the OCT distributed on the periphery of the cube 

adhering to the plastic walls. Cubes were then placed into a -80° C freezer until the day of 

cutting. The cryo-blocks were cut into 7 μm thick sections. These were placed on Poly-Prep 

slides (Sigma) and quickly air dried, fixed in ice cold methanol for 10 minutes, air dried 

again and placed in Giemsa stain (Sigma) (1:10 dilution in distilled water) for 40 minutes. 

Slides were visualised under optical microscopy (Leitz Laborlux 12) using digital image 

acquisition. Scanning Electron Microscopy (SEM): The attachment of ovine tendon 

fibroblast cells was also evaluated using SEM. Collagen fibres (NHS/EDC, 

NHS/EDC+EGDE) were hydrated for one hour in PBS and seeded with tendon fibroblasts at 

a seeding density of 104 cells in 200 μL of complete DMEM. Cells were then cultivated for 24 

hours and fixed in 4% glutaraldehyde in 0.1 M pipes buffer at pH 7.4 for 72 hours at 4 °C. 

They were rinsed in deionised water and treated with 1% osmium ferricyanide at 4 °C for 18 

hours. They were rinsed in deionised water and treated with 2% uranyl acetate in 0.05 M 

maleate buffer at pH 5.5 for 18 hours at 4 °C. They were again rinsed in deionised water and 

dehydrated in an ascending series of ethanolic solutions from 70% to 100%. They were 

placed in a Polaron critical point dryer (Quorum/Emitech, UK) where the ethanol was 
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replaced with liquid CO2 which was heated to 37°C where it changed state to its gaseous 

phase. The CO2 gas was vented and the samples were glued to SEM stubs with colloidal 

silver. The stubs were coated with 20 nm of gold in a Quorum/Emitech K575X sputter 

coater. They were viewed in an FEL-Philips XL30 FEG-SEM operated at 5 kV. 

 

3. Results and Discussion 

 

3.1. Microscopic Structure: Assembly of Synthetic Collagen Fascicles (SCF)  

 

Extrusion of acidified collagen gels into a fibre forming buffer at neutral pH and 

physiological temperatures is a well-known methodology by which to produce oriented 

collagen fibres based on the spontaneous assembly of type-I collagen in solution [22 and 

references therein]. However, the ability to produce sufficient quantities of collagen fibres on 

a laboratory scale has consistently limited the development of these biomaterials. 

Furthermore, these systems are limited in providing a single fibre cross-sectional motif and 

key parameters such as interstitial dimensions and specific surface area of the final scaffold 

cannot be readily controlled.  It is known that the structural dimensions for porous materials 

strongly impact upon the biological function of open-cell porous biomaterials [23]. 

Therefore, a materials fabrication methodology that can control the equivalent structural 

parameter for fibre assemblies (i.e. inter/intra fibre packing) is anticipated to be useful for 

the control of implant degradation, cellular infiltration and metabolic transport. We 

calculated the specific surface areas for a variety of fascicle configurations (Figure 2) using 

an idealised fibre morphology and show how the specific surface area can be varied by 

changing the number of fibres per fascicle. We were able to conveniently change the number 

of fibres per fascicle by changing the number of extrusion tubes between two and twelve 

and we used a twelve fibre fascicle for this study as a model system. 

 

The assembly of synthetic collagen fascicles was achieved by overlaying hydrated collagen 

fibres into a multithread array whilst hydrated with PBS and PEG. The presence of PEG 

provided a means by which to retain the circular fibre section of each structural unit of the 

multi-thread assembly as it was dried; this is used to define the morphology of the fibre with 

respect to the adjacent fibres. Furthermore it enabled the retention of a circular fibre section, 

thus presenting surface curvature commensurate with that of the constituent fibres (see 

Figure 3). We have found that PEG is necessary during drying to retain the constituent fibre 

structure, without which the collagen fibres intermingle to form an unstructured mass 

during drying. We evaluated a number of fibre formation buffers (TES, TRIS) and PEG 

concentrations (5%, 10%) and found that 20% PEG / PBS was necessary to provide sufficient 

wet strength for the fibre to be wound using our translating spool set-up.  The temperature 

of the fibre formation buffer was set at 37°C to maximise fibrillogenesis: at room 

temperature (22°C), the wet fibre was noticeably weaker, indicating a less well assembled 

structure. The translating rotating spool was used to achieve a defined number of fibre 

overlays per fascicle, thus enabling control over the number of fibres present in each unit.  
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For this study we selected twelve fibres per fascicle as our model system for physical 

characterisation; however this number can be conveniently tailored via the assembly process 

(shown in Figure 1) from two to > 100 fibres per fascicle. The dimensions of the hydrated 

fascicle assembly were selected at twelve fibres per fascicle to be microscopically similar to 

that observed for dissected ovine patellar tendon tissue as shown in Figure4. SEM and 

polarised optical microscopy images of the fascicle assemblies are shown in Figures 3 and 4.  

The polarised optical microscopy indicated axial collagen fibre alignment by appearing 

bright under crossed polarising filters. The micrographs were compared with partially 

dissected ovine patellar tendon (Figure 4C) to show that the structure was qualitatively 

similar, although the optically observable banding patterns of native type-I collagen 

assembly were not observed for the SCF scaffolds, indicating that extensive native-type 

fibrillogenesis was not occurring as has been recently observed for fibres incubated at 

neutral pH and 37°C at time periods > 12 hours [17]. The lack of the native d-banding in our 

scaffolds indicated that there may have been insufficient time for the self-assembly process 

to occur and/or that the mobility required was absent due to either the type or amount of 

pre-assembly crosslinking in the acidified collagen system.   

 

3.2. Mechanical Behaviour  

 

 

Crosslinking Failure 

Stress / 

MPa 

Failure 

Strain / % 

Elastic modulus 

at 5-7% strain / 

MPa 

Tested 

Length 

(grip to 

grip) / mm 

Diameter 

/µm  

(i) Fibre (n=5): 

NHS/EDC  

25.1(±9.2) 13.5(±4.4) 183.5(±76.2) 17.6(±3.2) 58.3(±5.2) 

(ii) Fibre (n=5): 

NHS/EDC + EGDE  

49.0(±22.1) 17.3(±5.6) 276.8(±168.4) 11.7(±1.7) 59.2(±13.3) 

(iii) SCF (n=4): 

NHS/EDC 

4.6(±2.0) 27.2(±12.0) 27.2(±13.2) 32.0(±3.2) 4240(±560) 

(iv) SCF (n=5): 

NHS/EDC + EDGE 

16.9(±2.6) 26.6(±2.2) 76.0(±8.9) 21.5(±2.9) 3420(±230) 

Table 1: Mechanical properties of crosslinked collagen fibres used as components of the synthetic 

collagen fascicles (i/ii) and twelve fibre synthetic collagen fascicles (12 fibres per fascicle) (iii/iv); one 

standard deviation shown as an indication of precision. 

 

As shown in Table 1, the effect of the EGDE crosslinking was to increase the failure stress for 

the constituent fibre by approximately two-fold to 48 MPa compared with 25 MPa for 

NHS/EDC alone such that the crosslinked collagen fibres have comparable mechanical 

strength to human anterior cruciate ligament tissue (mean failure stress = 13.3 - 37.8 MPa) 

[24] or rotator cuff supraspinatus tendon (mean failure stress = 4.1 - 16.5 MPa) [35] although 

not Achilles tendon (mean failure stress = 71 MPa)  [13]. The failure stress for ovine patellar 

tendon, upon which this scaffold design was modelled, was found to be 20.8(±7.9) MPa and 

failure strain was 19.7(±3.7)% , a detailed description of this testing will be published 

elsewhere.  
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The SCF scaffold produced using either fibre type was significantly weaker than the fibres 

alone (P<0.05), an effect that has been reported previously by Gentleman et al. [25] for 

collagen gel – fibre composites. The origin of this effect is not entirely clear, although we 

propose that the ostensible weakening of the SCFs may be associated with the mechanical 

test method using face grips that are unable to transfer equal load to each fibre constituent. 

This is supported by the observed increase in strain to failure for the scaffolds, which is 

likely to be the result of inter-fascicle slippage; the apparent modulus of the SCF scaffold 

was also reduced. Hence the overall mechanical properties of these constructs would not be 

sufficient to replace the mechanical function of tendon tissue in the shoulder or ankle, 

although the constituent fibres were of comparable strength.  

 

Fabrication of collagen bioscaffolds with mechanical properties that match those of actual 

tendon has remained a significant challenge and despite previous reports of fibre 

mechanical properties [10, 26] that are comparable with tendon, the mechanical properties of 

fibre assemblies are reported to be approximately a quarter of the constituent fibres [27, 28]. 

This discrepancy is presumably a result of the inability of the final scaffold to support 

loading of all fibres; however, it does mean that collagen fibre scaffolds are likely to be 

mechanically weaker than the tendon or ligament they replace when surgically fixated. Thus 

the practical requirement for these biomaterials as augmentative devices is that they can be 

attached via a surgical fixation that confers sub-failure loading to the biomaterial. This is 

achieved using ECM tendon repair patches where the mechanical properties of the final 

constructs are suitable for suture fixation to tendon tissue, without full load-bearing; ECM 

tendon reinforcement patches fail in the stress range ca. 5 – 10 Pa at 27 – 229 N force [29, 30]. 

Thus the mechanical strength required for fixation in a human tendon repair would also be 

achieved using these SCF bioscaffolds, which exhibited failure stresses that are comparable 

in magnitude at 4.6 – 16.9 MPa.  

 

3.3. Structural Characterisation  

 

 

The physical structure of the synthetic collagen fascicle was characterised using differential 

scanning calorimetry (DSC), fourier transform infra-red spectroscopy (FTIR) and small angle 

x-ray scattering (SAXS). 2D small angle x-ray diffraction patterns for the two types of SCF 

are shown in figure 5 and confirm the presence of alignment within the collagen fibres 

parallel to the extrusion direction (which is horizontal relative to the images shown). The 

peaks in the horizontal direction correspond to high-orders of diffraction from the 64 nm 

repeat along the collagen fibres, whereas the peaks in the vertical direction are related to the 

inter-fibril packing distance. Samples crosslinked using the two different methods showed 

similar degrees of alignment.  

 

DSC results are also shown in figure 5, and indicate the absence of any residual crystalline 

PEG within the SCF structure, since this would be seen as a characteristic sharp peak (Figure 

5).  The broad peak at lower temperatures is caused by denaturation of the triple-helical 

collagen structure and is dependent on the water content [31, 32]. The second peak, seen at 
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temperatures of approximately 220°C is likely to be due to loss of the secondary collagen 

structure and occurs at a similar temperature for both types of SCF. 

 

FTIR-ATR spectra for the two SCFs are shown in figure 6; this technique can be used to 

study the extent of collagen denaturation using two mid-IR peaks: the peak at 1235 cm-1, 

which is an amide III band and is sensitive to the triple-helix content of collagen, and the 

peak at 1450 cm-1, which corresponds to CH2 and CH3 deformation and is invariant with 

changes in extent of denaturation [34]. The higher the peak height ratio A(1235 cm-1) : A(1450 

cm-1) , the greater the triple-helix content; he peak height ratio for unprocessed acid swollen 

collagen was found to be 1.13±0.01 whereas that for unprocessed gelatine (Sigma Aldrich) 

was found to be 0.95±0.01. The SCFs crosslinked using both chemistries had peak height 

ratios between these two values (1.02±0.01 using NHS/EDC and 1.02±0.01 using NHS/EDC + 

EGDE), which indicates that partial denaturation of the collagen structure had occurred 

during crosslinking and/or extrusion processing. Partial denaturation of the collagen 

structure may have a detrimental effect on the mechanical properties of the fibres 

owing to the reduction of concerted load bearing via fiber interdigitation however, it 

was found that the cross-linking chemistry had a dominant effect on mechanical 

properties. Therefore, it was concluded that effective crosslinking was a key 

component for achieving sufficient mechanical strength.  

3.4. In vitro Biological properties of the Synthetic Collagen Fascicle  

3.4.1. Infiltration of SCFs with Human blood 

 

There are several studies in literature focused on the in vivo implantation of bundles of 

reconstituted collagen fibres [22 and reference therein]. In some cases, to ease the surgical 

delivery of the scaffold, bundles were made by manually aligning collagen fibres cast in 

collagen gel [11, 28]. However, this system may block the early infiltration of cells into the 

interior of the implant. Cavallaro et al. implanted a bundle made by a continuous thread of 

extruded collagen arranged to form a closed loop into a canine knee [33]. However, this 

study was limited in scope with only two cases at a single time point reported, with the 

anterior cruciate ligament as the target tissue. The system of open collagen fibre structures 

has not yet been investigated in the context of tendon repair and may provide a promising 

strategy to scaffold repair of tendon tissue. In particular, the possibility of an open array of 

synthetic collagen fascicles is attractive because it is hypothesised that it may ease the 

immediate cellular and vascular ingrowth and therefore it may improve the repair 

capabilities of the implant. A key element of this biomaterial design was to provide the 

ability to control specific surface area and the interstices available for neo-tissue formation 

such that a biomimetic micro-structure is produced. Furthermore, the microscale similarity 

between the SCF implant and the native tissues may provide a structural cue to the body to 

generate a native organisation of new vascularity and neo-tendon tissue in vivo.  

 

As a preliminary model to evaluate the ability of the dry implant to be infiltrated with 

blood, the SCF implants were hydrated using human whole blood. The blood-hydrated 

implant was then imaged histologically in cross-section. It was found that at lower 

magnification (Figure 8A) it was possible to observe a great number of individual SCF 
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strands. These fascicles were independent from one another and they were freely permeated 

by white blood cells (WBC) and blood components. At higher magnification (figures 7), 

WBCs were observed to adhere to single collagen fibres at 1, 3 and 7 days after seeding. No 

differences in cellularity or in other morphological aspects were observed between the 

different time-points. Collagen fibres were shown to have mostly round or elongated cross 

sectional areas and to contain some defects such as voids between the fibers, indicative of 

incomplete fascicle packing. As anticipated from the fibre close-packing structures proposed 

(Figure 2), irregular surface features consistent with a faceted fibre arrangement were 

observed although physical deformation most likely causes the significant deviations from 

the idealized geometric representations of Figure 2.  

3.4.2. Initial Stage Interactions of the SCF with Tendon fibroblasts 

 

The purpose of this biomaterial design was to provide a controllable structure that enables 

the attachment and proliferation of tendon fibroblasts with the overall aim that they deposit 

neo-tendon tissue. Initially, this regenerative process would be expected to deposit tissue 

within the inter-fascicle voids and as the implant degrades, the SCF structures are 

anticipated to degrade with concomitant tissue deposition. To examine this possibility in the 

initial stages of healing, we evaluated the process of seeding the scaffold with ovine tendon 

fibroblasts and the morphological features of the scaffold and cells that had attached to the 

structure up to seven days in culture. It was found that both crosslinking chemistries were 

suitable for tendon fibroblast attachment; however, as shown in figure 8, the NHS/EDC 

chemistry was noticeably more amenable to cellular spreading, with tendon fibroblasts 

assuming a flattened or elongated phenotype. It was found that a significant number of 

tendon fibroblasts that attached to the NHS/EDC + EDGE crosslinked fibres were spheroidal 

in morphology, possibly indicating suboptimal interactions with the matrix.   The 

interactions between these crosslinked fibres and ovine tendon fibroblasts have been 

investigated in detail by our group [20] and these morphological findings further supported 

the biochemical data which indicates reduced matrix deposition onto the NHS/EDC + EGDE 

crosslinked collagen matrix compared with NHS/EDC alone. In addition, we reported 

expression levels of soluble the tendon tissue markers Type-1/Tenascin results, which also 

indicated that the NHS/EDC crosslinked structures were more compatible with ovine 

tenocyte cells than NHS/EDC and EGDE.  

 

4. Conclusions   

 

In this study we have described a novel method for the synthetic assembly of type-I collagen 

fibres to form a pseudo-fascicle structure, which mimics the microscopic structure of native 

tendon tissue. The purpose of the study was to develop a method of assembly that provides 

a structure that not only mimics the native composition and orientation of tendon but also 

its microscopic structure. The scaffold structure that was developed may enable the tailoring 

of key microscopic parameters including the specific surface area and dimensions of inter-

unit interstices. Thus, this method demonstrates the possibility of controlling key 

parameters for in vivo use such as degradation rate, cellular infiltration and diffusion of 

nutrients in and out of the structure. In this report we have showed that the physical and 
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biological properties of the type-I collagen structure indicate suitability for use in tendon 

tissue engineering. We have developed a novel methodology to achieve modulation of both 

microscopic architecture and the properties conferred by crosslinking chemistry, such as 

mechanical properties chemotactic signalling and degradation rate. We plan to further 

evaluate these materials in biological environments with the overall aim of developing a 

programmable type-I collagen fibre architecture that can achieve the regeneration of 

damaged tendon tissue. 
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Figures 

 
Figure 1: Schematic for the production equipment used to produce a synthetic collagen fascicle with 

various numbers of constituent collagen fibres possible based on control of the spool’s translation and 

rotational speed. 
 
Figure 2: Schematic of assembled SCF structures (in 2D axial plan view) showing inter-fibre packing 

arrangements that are possible using this assembly technique. Specific surface areas were calculated 

based on a 50 micrometer diameter fibre for various faceted hexagonal close packed fascicle 

assemblies. Inset schemes show proposed cubic inter-fascicle packing structure showing the enlarged 

interstices expected for the SCFs compared with the close-packed single fibre motif. Inset is a 

photograph of a SCF bundle. 
 
Figure 3: Scanning electron microscopy (right) and dry optical microscopy (left) of synthetic collagen 

fascicles showing individual units of the synthetic collagen fascicle structure. The electron 

micrograph shows the multi-filament nature of the synthetic fascicles and that the constituent fibres 

retain the morphology of the individual units. No notable differences were observed between the 

samples crosslinked using either A/B: NHS/EDC or C/D: NHS/EDC + EGDE as the crosslinking 

system.  

 

Figure 4: Polarised optical microscopy images, shown in three rows of representative micrographs, of 

dissected synthetic collagen fascicles crosslinked using A: NHS/EDC or B: NHS/EDC + EGDE and C: 

ovine patellar tendon tissue dissected to various microstructural levels. All samples were imaged 

after >24 hours incubation in PBS. The scale bar applies to all micrographs shown. 

 
Figure 5: Small Angle X-ray scattering results (left) and Differential Scanning Calorimetry results 

(right) of the synthetic collagen fascicle crosslinked using either NHS/EDC (top) or NHS/EDC + EDGE 

(bottom). The DSC for PEG (n=3) alone is also shown superimposed, indicating lack of residual PEG 

in the final crosslinked SCF structures. 

 

 
Figure 6: FTIR spectra of the synthetic collagen fascicle crosslinked using either NHS/EDC or 

NHS/EDC + EDGE. In addition, the spectra for the collagen raw material, prior to processing and 

crosslinking and the PEG used in the fibre formation buffer is shown for reference. 

 

 
Figure 7: Histological appearance of the synthetic collagen fascicle bundles immersed in a blood clot 

after seven days in culture and sectioned perpendicular to the fibre axis. Blood was found to 

permeate the space between single fascicles freely and white blood cell (WBC) nuclei were observed 

adherent to the fibre surface. The whole SCF bundle is 4- 5 mm is diameter, increasing magnifications 

were used A < B < C. Inset are photographs of the SCF scaffold structure attached to the metal spring 

used to impose mechanical alignment and tension on the scaffold. 

 

Figure 8: SEM images showing ovine tendon fibroblast cells adhered to the synthetic collagen fascicle 

biomaterial A: NHS/EDC crosslinking chemistry B: NHS/EDC + EDGE crosslinking chemistry. SCF 

structure was imaged after twenty four hours in cell culture (details in materials section). 
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