3,768 research outputs found
Finite Density QCD in the Chiral Limit
We present the first results of an exact simulation of full QCD at finite
density in the chiral limit. We have used a MFA (Microcanonical Fermionic
Average) inspired approach for the reconstruction of the Grand Canonical
Partition Function of the theory; using the fugacity expansion of the fermionic
determinant we are able to move continuously in the () plane with
.Comment: 3 pages, LaTeX, 3 figures, uses espcrc2.sty, psfig. Talk presented by
A. Galante at Lattice 97. Correction of some reference
Activation assessment of the soil around the ESS accelerator tunnel
Activation of the soil surrounding the ESS accelerator tunnel calculated by
the MARS15 code is presented. A detailed composition of the soil, that
comprises about 30 different chemical elements, is considered. Spatial
distributions of the produced activity are provided in both transverse and
longitudinal direction. A realistic irradiation profile for the entire planned
lifetime of the facility is used. The nuclear transmutation and decay of the
produced radionuclides is calculated with the DeTra code which is a built-in
tool for the MARS15 code. Radionuclide production by low-energy neutrons is
calculated using the ENDF/B-VII evaluated nuclear data library. In order to
estimate quality of this activation assessment, a comparison between calculated
and measured activation of various foils in a similar radiation environment is
presented.Comment: 20 pp. Presented at the 4th International Workshop on Accelerator
Radiation Induced Activation (ARIA'17) held at the European Spallation Source
(ESS) on May 22-24, 2017 in Lund, Swede
Lessons from the Congested Clique Applied to MapReduce
The main results of this paper are (I) a simulation algorithm which, under
quite general constraints, transforms algorithms running on the Congested
Clique into algorithms running in the MapReduce model, and (II) a distributed
-coloring algorithm running on the Congested Clique which has an
expected running time of (i) rounds, if ;
and (ii) rounds otherwise. Applying the simulation theorem to
the Congested-Clique -coloring algorithm yields an -round
-coloring algorithm in the MapReduce model.
Our simulation algorithm illustrates a natural correspondence between
per-node bandwidth in the Congested Clique model and memory per machine in the
MapReduce model. In the Congested Clique (and more generally, any network in
the model), the major impediment to constructing fast
algorithms is the restriction on message sizes. Similarly, in the
MapReduce model, the combined restrictions on memory per machine and total
system memory have a dominant effect on algorithm design. In showing a fairly
general simulation algorithm, we highlight the similarities and differences
between these models.Comment: 15 page
The MASSIVE Survey - X. Misalignment between Kinematic and Photometric Axes and Intrinsic Shapes of Massive Early-Type Galaxies
We use spatially resolved two-dimensional stellar velocity maps over a
field of view to investigate the kinematic features of 90
early-type galaxies above stellar mass in the MASSIVE
survey. We measure the misalignment angle between the kinematic and
photometric axes and identify local features such as velocity twists and
kinematically distinct components. We find 46% of the sample to be well aligned
(), 33% misaligned, and 21% without detectable rotation
(non-rotators). Only 24% of the sample are fast rotators, the majority of which
(91%) are aligned, whereas 57% of the slow rotators are misaligned with a
nearly flat distribution of from to . 11
galaxies have and thus exhibit minor-axis ("prolate")
rotation in which the rotation is preferentially around the photometric major
axis. Kinematic misalignments occur more frequently for lower galaxy spin or
denser galaxy environments. Using the observed misalignment and ellipticity
distributions, we infer the intrinsic shape distribution of our sample and find
that MASSIVE slow rotators are consistent with being mildly triaxial, with mean
axis ratios of and . In terms of local kinematic features,
51% of the sample exhibit kinematic twists of larger than , and 2
galaxies have kinematically distinct components. The frequency of misalignment
and the broad distribution of reported here suggest that the most
massive early-type galaxies are mildly triaxial, and that formation processes
resulting in kinematically misaligned slow rotators such as gas-poor mergers
occur frequently in this mass range.Comment: Accepted to MNRA
A criterion for separating process calculi
We introduce a new criterion, replacement freeness, to discern the relative
expressiveness of process calculi. Intuitively, a calculus is strongly
replacement free if replacing, within an enclosing context, a process that
cannot perform any visible action by an arbitrary process never inhibits the
capability of the resulting process to perform a visible action. We prove that
there exists no compositional and interaction sensitive encoding of a not
strongly replacement free calculus into any strongly replacement free one. We
then define a weaker version of replacement freeness, by only considering
replacement of closed processes, and prove that, if we additionally require the
encoding to preserve name independence, it is not even possible to encode a non
replacement free calculus into a weakly replacement free one. As a consequence
of our encodability results, we get that many calculi equipped with priority
are not replacement free and hence are not encodable into mainstream calculi
like CCS and pi-calculus, that instead are strongly replacement free. We also
prove that variants of pi-calculus with match among names, pattern matching or
polyadic synchronization are only weakly replacement free, hence they are
separated both from process calculi with priority and from mainstream calculi.Comment: In Proceedings EXPRESS'10, arXiv:1011.601
Fungal iron availability during deep seated candidiasis is defined by a complex interplay involving systemic and local events
Peer reviewedPublisher PD
Analysis of the Expression of Repetitive DNA Elements in Osteosarcoma
Osteosarcoma (OS) is a rare malignant bone tumor. It affects mostly young persons and has poor outcome with the present treatment. No improvement was observed since the introduction of chemotherapy. The better understanding of osteosarcoma development could indicate better management strategy. Repetitive DNA elements were found to play a role in cancer mechanism especially in epithelial tumors but not yet analyzed in osteosarcoma. We conducted the study to analyse the expression profile of repetitive elements (RE) in osteosarcoma.
Methods: Fresh bone paired (tumor and normal bone) samples were obtained from excised parts of tumors of 18 patients with osteosarcoma. We performed sequencing of RNA extracted from 36 samples (18 tumor tissues and 18 normal bone for controls), mapped raw reads to the human genome and identified the REs. EdgeR package was used to analyse the difference in expression of REs between osteosarcoma and normal bone.
Results: 82 REs were found differentially expressed (FDR < 0.05) between osteosarcoma and normal bone. Out of all significantly changed REs, 35 were upregulated and 47 were downregulated. HERVs (THE1C-int, LTR5, MER57F and MER87B) and satellite elements (HSATII, ALR-alpha) were the most significantly differential expressed elements between osteosarcoma and normal tissues. These results suggest significant impact of REs in the osteosarcoma. The role of REs should be further studied to understand the mechanism they have in the genesis of osteosarcoma
The Rewiring of Ubiquitination Targets in a Pathogenic Yeast Promotes Metabolic Flexibility, Host Colonization and Virulence
Funding: This work was funded by the European Research Council [http://erc.europa.eu/], AJPB (STRIFE Advanced Grant; C-2009-AdG-249793). The work was also supported by: the Wellcome Trust [www.wellcome.ac.uk], AJPB (080088, 097377); the UK Biotechnology and Biological Research Council [www.bbsrc.ac.uk], AJPB (BB/F00513X/1, BB/K017365/1); the CNPq-Brazil [http://cnpq.br], GMA (Science without Borders fellowship 202976/2014-9); and the National Centre for the Replacement, Refinement and Reduction of Animals in Research [www.nc3rs.org.uk], DMM (NC/K000306/1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Acknowledgments We thank Dr. Elizabeth Johnson (Mycology Reference Laboratory, Bristol) for providing strains, and the Aberdeen Proteomics facility for the biotyping of S. cerevisiae clinical isolates, and to Euroscarf for providing S. cerevisiae strains and plasmids. We are grateful to our Microscopy Facility in the Institute of Medical Sciences for their expert help with the electron microscopy, and to our friends in the Aberdeen Fungal Group for insightful discussions.Peer reviewedPublisher PD
The MASSIVE Survey. VI. The spatial sistribution and kinematics of warm ionized gas in the most massive local early-type galaxies
We present the first systematic investigation of the existence, spatial distribution, and kinematics of warm ionized gas as traced by the [O ii] 3727 Å emission line in 74 of the most massive galaxies in the local universe. All of our galaxies have deep integral-field spectroscopy from the volume- and magnitude-limited MASSIVE survey of early-type galaxies with stellar mass (M K < −25.3 mag) and distance D < 108 Mpc. Of the 74 galaxies in our sample, we detect warm ionized gas in 28, which yields a global detection fraction of 38 ± 6% down to a typical [O ii] equivalent width limit of 2 Å. MASSIVE fast rotators are more likely to have gas than MASSIVE slow rotators with detection fractions of 80 ± 10% and 28 ± 6%, respectively. The spatial extents span a wide range of radii (0.6–18.2 kpc; 0.1–4R e ), and the gas morphologies are diverse, with 17/28 ≈ 61 ± 9% being centrally concentrated, 8/28 ≈ 29 ± 9% exhibiting clear rotation out to several kiloparsecs, and 3/28 ≈ 11 ± 6% being extended but patchy. Three out of four fast rotators show kinematic alignment between the stars and gas, whereas the two slow rotators with robust kinematic measurements available exhibit kinematic misalignment. Our inferred warm ionized gas masses are roughly ~105 M ⊙. The emission line ratios and radial equivalent width profiles are generally consistent with excitation of the gas by the old underlying stellar population. We explore different gas origin scenarios for MASSIVE galaxies and find that a variety of physical processes are likely at play, including internal gas recycling, cooling out of the hot gaseous halo, and gas acquired via mergers
- …
