218 research outputs found

    Focusing by blocking: repeatedly generating central density peaks in self-propelled particle systems by exploiting diffusive processes

    Full text link
    Over the past few years the displacement statistics of self-propelled particles has been intensely studied, revealing their long-time diffusive behavior. Here, we demonstrate that a concerted combination of boundary conditions and switching on and off the self-propelling drive can generate and afterwards arbitrarily often restore a non-stationary centered peak in their spatial distribution. This corresponds to a partial reversibility of their statistical behavior, in opposition to the above-mentioned long-time diffusive nature. Interestingly, it is a diffusive process that mediates and makes possible this procedure. It should be straightforward to verify our predictions in a real experimental system.Comment: 6 pages, 6 figure

    Cooperation of Sperm in Two Dimensions: Synchronization, Attraction and Aggregation through Hydrodynamic Interactions

    Get PDF
    Sperm swimming at low Reynolds number have strong hydrodynamic interactions when their concentration is high in vivo or near substrates in vitro. The beating tails not only propel the sperm through a fluid, but also create flow fields through which sperm interact with each other. We study the hydrodynamic interaction and cooperation of sperm embedded in a two-dimensional fluid by using a particle-based mesoscopic simulation method, multi-particle collision dynamics (MPC). We analyze the sperm behavior by investigating the relationship between the beating-phase difference and the relative sperm position, as well as the energy consumption. Two effects of hydrodynamic interaction are found, synchronization and attraction. With these hydrodynamic effects, a multi-sperm system shows swarm behavior with a power-law dependence of the average cluster size on the width of the distribution of beating frequencies

    On the General Analytical Solution of the Kinematic Cosserat Equations

    Full text link
    Based on a Lie symmetry analysis, we construct a closed form solution to the kinematic part of the (partial differential) Cosserat equations describing the mechanical behavior of elastic rods. The solution depends on two arbitrary analytical vector functions and is analytical everywhere except a certain domain of the independent variables in which one of the arbitrary vector functions satisfies a simple explicitly given algebraic relation. As our main theoretical result, in addition to the construction of the solution, we proof its generality. Based on this observation, a hybrid semi-analytical solver for highly viscous two-way coupled fluid-rod problems is developed which allows for the interactive high-fidelity simulations of flagellated microswimmers as a result of a substantial reduction of the numerical stiffness.Comment: 14 pages, 3 figure

    Coherent Hydrodynamic Coupling for Stochastic Swimmers

    Full text link
    A recently developed theory of stochastic swimming is used to study the notion of coherence in active systems that couple via hydrodynamic interactions. It is shown that correlations between various modes of deformation in stochastic systems play the same role as the relative internal phase in deterministic systems. An example is presented where a simple swimmer can use these correlations to hunt a non-swimmer by forming a hydrodynamic bound state of tunable velocity and equilibrium separation. These results highlight the significance of coherence in the collective behavior of nano-scale stochastic swimmers.Comment: 6 pages, 3 figure

    Cardiac MR Elastography: Comparison with left ventricular pressure measurement

    Get PDF
    Purpose of the Study: To compare magnetic resonance elastography (MRE) with ventricular pressure changes in an animal model. Methods: Three pigs of different cardiac physiology (weight, 25 to 53 kg; heart rate, 61 to 93 bpm; left ventricular [LV] end-diastolic volume, 35 to 70 ml) were subjected to invasive LV pressure measurement by catheter and noninvasive cardiac MRE. Cardiac MRE was performed in a short-axis view of the heart and applying a 48.3-Hz shear-wave stimulus. Relative changes in LV-shear wave amplitudes during the cardiac cycle were analyzed. Correlation coefficients between wave amplitudes and LV pressure as well as between wave amplitudes and LV diameter were determined. Results: A relationship between MRE and LV pressure was observed in all three animals (R-square [greater than or equal to] 0.76). No correlation was observed between MRE and LV diameter (R-square [less than or equal to] 0.15). Instead, shear wave amplitudes decreased 102 +/- 58 ms earlier than LV diameters at systole and amplitudes increased 175 +/- 40 ms before LV dilatation at diastole. Amplitude ratios between diastole and systole ranged from 2.0 to 2.8, corresponding to LV pressure differences of 60 to 73 mmHg. Conclusion: Externally induced shear waves provide information reflecting intraventricular pressure changes which, if substantiated in further experiments, has potential to make cardiac MRE a unique noninvasive imaging modality for measuring pressure-volume function of the heart

    How does mental health care perform in respect to service users' expectations? Evaluating inpatient and outpatient care in Germany with the WHO responsiveness concept

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Health systems increasingly try to make their services more responsive to users' expectations. In the context of the World Health Report 2000, WHO developed the concept of health system <it>responsiveness </it>as a performance parameter. <it>Responsiveness </it>relates to the system's ability to respond to service users' legitimate expectations of non-medical aspects. We used this concept in an effort to evaluate the performance of mental health care in a catchment area in Germany.</p> <p>Methods</p> <p>In accordance with the method WHO used for its <it>responsiveness </it>survey, <it>responsiveness </it>for inpatient and outpatient mental health care was evaluated by a standardised questionnaire. <it>Responsiveness </it>was assessed in the following domains: <it>attention, dignity</it>, <it>clear communication</it>, <it>autonomy, confidentiality, basic amenities, choice </it>of health care provider, <it>continuity</it>, and <it>access to social support</it>. Users with complex mental health care needs (i.e., requiring social and medical services or inpatient care) were recruited consecutively within the mental health services provided in the catchment area of the Hanover Medical School.</p> <p>Results</p> <p>221 persons were recruited in outpatient care and 91 in inpatient care. Inpatient service users reported poor <it>responsiveness </it>(22%) more often than outpatients did (15%); however this was significant only for the domains <it>dignity </it>and <it>communication</it>. The best performing domains were <it>confidentiality </it>and <it>dignity</it>; the worst performing were <it>choice</it>, <it>autonomy </it>and <it>basic amenities </it>(only inpatient care). <it>Autonomy </it>was rated as the most important domain, followed by <it>attention </it>and <it>communication</it>. <it>Responsiveness </it>within outpatient care was rated worse by people who had less money and were less well educated. Inpatient <it>responsiveness </it>was rated better by those with a higher level of education and also by those who were not so well educated. 23% of participants reported having been discriminated against in mental health care during the past 6 months.</p> <p>The results are similar to prior <it>responsiveness </it>surveys with regard to the overall better performance of outpatient care. Where results differ, this can best be explained by certain characteristics that are applicable to mental health care and also by the users with complex needs. The expectations of <it>attention </it>and <it>autonomy</it>, including participation in the treatment process, are not met satisfactorily in inpatient and outpatient care.</p> <p>Conclusion</p> <p><it>Responsiveness </it>as a health system performance parameter provides a refined picture of inpatient and outpatient mental health care. Reforms to the services provided should be orientated around domains that are high in importance, but low in performance. Measuring <it>responsiveness </it>could provide well-grounded guidance for further development of mental health care systems towards becoming better patient-orientated and providing patients with more respect.</p

    Multi-Particle Collision Dynamics -- a Particle-Based Mesoscale Simulation Approach to the Hydrodynamics of Complex Fluids

    Full text link
    In this review, we describe and analyze a mesoscale simulation method for fluid flow, which was introduced by Malevanets and Kapral in 1999, and is now called multi-particle collision dynamics (MPC) or stochastic rotation dynamics (SRD). The method consists of alternating streaming and collision steps in an ensemble of point particles. The multi-particle collisions are performed by grouping particles in collision cells, and mass, momentum, and energy are locally conserved. This simulation technique captures both full hydrodynamic interactions and thermal fluctuations. The first part of the review begins with a description of several widely used MPC algorithms and then discusses important features of the original SRD algorithm and frequently used variations. Two complementary approaches for deriving the hydrodynamic equations and evaluating the transport coefficients are reviewed. It is then shown how MPC algorithms can be generalized to model non-ideal fluids, and binary mixtures with a consolute point. The importance of angular-momentum conservation for systems like phase-separated liquids with different viscosities is discussed. The second part of the review describes a number of recent applications of MPC algorithms to study colloid and polymer dynamics, the behavior of vesicles and cells in hydrodynamic flows, and the dynamics of viscoelastic fluids

    Physicochemical and textural quality attributes of gluten-free bread formulated with guar gum

    Get PDF
    The objective of this study was to assess the combined effect of guar gum (GG) and water content (WC) on the rheological properties of batter, and the physicochemical and textural properties of bread. Batches of gluten-free bread used a base formulation of rice (50%), maize (30%) and quinoa flour (20%), with different levels of GG (2.5, 3.0 or 3.5%) and water (90, 100 or 110%) in a full factorial design. Higher GG doses (p<0.001) tended to produce batters of lower stickiness, work of adhesion and cohesive strength; yet, of higher firmness, consistency, cohesiveness and viscosity index. These batters yielded loaves of lower (p<0.001) specific volume and baking loss; and crumbs of lower (p<0.001) aw, pH, mean cell area, void fraction, mean cell aspect ratio; and higher (p<0.001) hardness, adhesiveness, springiness, cohesiveness, chewiness, resilience, mean cell density, cell size uniformity and mean cell compactness. The sticker and less consistent batters produced with higher WC rendered larger bread loaves of softer and more cohesive and springy/resilient crumbs with greater mean cell size and void fraction. Gluten-free loaves of good appearance in terms of higher specific volume, lower crumb hardness, higher crumb springiness, and open grain visual texture were obtained in formulations with 110% WC and GG doses between 2.5 and 3.0%.Eng. Encina-Zelada acknowledges the financial aid provided by the Peruvian National Programme of Scholarships and Student Loans (PRONABEC) in the mode of PhD grants (Presidente de la República-183308). The authors are grateful to Eng. Andrea Oliveira from Prodipani, Portugal, for her kind advice and providing breadmaking ingredients.info:eu-repo/semantics/publishedVersio
    corecore