509 research outputs found
Gaussian processes for choosing laser parameters for driven, dissipative Rydberg aggregates
To facilitate quantum simulation of open quantum systems at finite
temperatures, an important ingredient is to achieve thermalization on a given
time-scale. We consider a Rydberg aggregate (an arrangement of Rydberg atoms
that interact via long-range interactions) embedded in a laser-driven atomic
environment. For the smallest aggregate (two atoms), suitable laser parameters
can be found by brute force scanning of the four tunable laser parameters. For
more atoms, however, such parameter scans are too computationally costly. Here
we apply Gaussian processes to predict the thermalization performance as a
function of the laser parameters for two-atom and four-atom aggregates. These
predictions perform remarkably well using just 1000 simulations, demonstrating
the utility of Gaussian processes in an atomic physics setting. Using this
approach, we find and present effective laser parameters for generating
thermalization, the robustness of these parameters to variation, as well as
different thermalization dynamics
Non-Markovian Dynamics in Ultracold Rydberg Aggregates
We propose a setup of an open quantum system in which the environment can be
tuned such that either Markovian or non-Markovian system dynamics can be
achieved. The implementation uses ultracold Rydberg atoms, relying on their
strong long-range interactions. Our suggestion extends the features available
for quantum simulators of molecular systems employing Rydberg aggregates and
presents a new test bench for fundamental studies of the classification of
system-environment interactions and the resulting system dynamics in open
quantum systems.Comment: 13 pages, 4 figure
Hierarchy of stochastic pure states for open quantum system dynamics
We derive a hierarchy of stochastic evolution equations for pure states
(quantum trajectories) to efficiently solve open quantum system dynamics with
non-Markovian structured environments. From this hierarchy of pure states
(HOPS) the exact reduced density operator is obtained as an ensemble average.
We demonstrate the power of HOPS by applying it to the Spin-Boson model, the
calculation of absorption spectra of molecular aggregates and energy transfer
in a photosynthetic pigment-protein complex
Flexible scheme to truncate the hierarchy of pure states
The hierarchy of pure states (HOPS) is a wavefunction-based method which can
be used for numerically modeling open quantum systems. Formally, HOPS recovers
the exact system dynamics for an infinite depth of the hierarchy. However,
truncation of the hierarchy is required to numerically implement HOPS. We want
to choose a 'good' truncation method, where by 'good' we mean that it is
numerically feasible to check convergence of the results. For the truncation
approximation used in previous applications of HOPS, convergence checks are
numerically challenging. In this work we demonstrate the application of the
'-particle approximation' (PA) to HOPS. We also introduce a new
approximation, which we call the '-mode approximation' (MA). We then
explore the convergence of these truncation approximations with respect to the
number of equations required in the hierarchy. We show that truncation
approximations can be used in combination to achieve convergence in two
exemplary problems: absorption and energy transfer of molecular aggregates.Comment: 8 pages, 3 figure
Quantum simulation of energy transport with embedded Rydberg aggregates
We show that an array of ultracold Rydberg atoms embedded in a laser driven
background gas can serve as an aggregate for simulating exciton dynamics and
energy transport with a controlled environment. Spatial disorder and
decoherence introduced by the interaction with the background gas atoms can be
controlled by the laser parameters. This allows for an almost ideal realization
of a Haken-Reineker-Strobl type model for energy transport. Physics can be
monitored using the same mechanism that provides control over the environment.
The degree of decoherence is traced back to information gained on the
excitation location through the monitoring, turning the setup into an
experimentally accessible model system for studying the effects of quantum
measurements on the dynamics of a many-body quantum system.Comment: 5 pages, 4 figures, 3 pages supp. in
Robustness of spatial Penning trap modes against environment-assisted entanglement
The separability of the spatial modes of a charged particle in a Penning trap
in the presence of an environment is studied by means of the positive partial
transpose (PPT) criterion. Assuming a weak Markovian environment, described by
linear Lindblad operators, our results strongly suggest that the environmental
coupling of the axial and cyclotron degrees of freedom does not lead to
entanglement at experimentally realistic temperatures. We therefore argue that,
apart from unavoidable decoherence, the presence of such an environment does
not alter the effectiveness of recently suggested quantum information protocols
in Penning traps, which are based on the combination of a spatial mode with the
spin of the particle.Comment: 11 pages, 2 figure
Suppression of quantum oscillations and the dependence on site energies in electronic excitation transfer in the Fenna-Matthews-Olson trimer
Energy transfer in the photosynthetic complex of the Green Sulfur Bacteria
known as the Fenna-Matthews-Olson (FMO) complex is studied theoretically taking
all three subunits (monomers) of the FMO trimer and the recently found eighth
bacteriochlorophyll (BChl) molecule into account. We find that in all
considered cases there is very little transfer between the monomers. Since it
is believed that the eighth BChl is located near the main light harvesting
antenna we look at the differences in transfer between the situation when BChl
8 is initially excited and the usually considered case when BChl 1 or 6 is
initially excited. We find strong differences in the transfer dynamics, both
qualitatively and quantitatively. When the excited state dynamics is
initialized at site eight of the FMO complex, we see a slow exponential-like
decay of the excitation. This is in contrast to the oscillations and a
relatively fast transfer that occurs when only seven sites or initialization at
sites 1 and 6 is considered. Additionally we show that differences in the
values of the electronic transition energies found in the literature lead to a
large difference in the transfer dynamics
Simulation of absorption spectra of molecular aggregates: A hierarchy of stochastic pure state approach
Simulation of spectroscopic observables for molecular aggregates with strong and structured coupling of electronic excitation to vibrational degrees of freedom is an important but challenging task. The Hierarchy of Pure States (HOPS) provides a formally exact solution based on local, stochastic trajectories. Exploiting the localization of HOPS for the simulation of absorption spectra in large aggregates requires a formulation in terms of normalized trajectories. Here, we provide a normalized dyadic equation where the ket- and bra-states are propagated in different electronic Hilbert spaces. This work opens the door to applying adaptive HOPS methods for the simulation of absorption spectra. (C) 2022 Author(s)
Folyóirat vagy gyűjteményes kötet? (Csokonai Diétai Magyar Múzsája)
BACKGROUND: The complex interplay between viral replication and host immune response during infection remains poorly understood. While many viruses are known to employ anti-immune strategies to facilitate their replication, highly pathogenic virus infections can also cause an excessive immune response that exacerbates, rather than reduces pathogenicity. To investigate this dichotomy in severe acute respiratory syndrome coronavirus (SARS-CoV), we developed a transcriptional network model of SARS-CoV infection in mice and used the model to prioritize candidate regulatory targets for further investigation. RESULTS: We validated our predictions in 18 different knockout (KO) mouse strains, showing that network topology provides significant predictive power to identify genes that are important for viral infection. We identified a novel player in the immune response to virus infection, Kepi, an inhibitory subunit of the protein phosphatase 1 (PP1) complex, which protects against SARS-CoV pathogenesis. We also found that receptors for the proinflammatory cytokine tumor necrosis factor alpha (TNFα) promote pathogenesis, presumably through excessive inflammation. CONCLUSIONS: The current study provides validation of network modeling approaches for identifying important players in virus infection pathogenesis, and a step forward in understanding the host response to an important infectious disease. The results presented here suggest the role of Kepi in the host response to SARS-CoV, as well as inflammatory activity driving pathogenesis through TNFα signaling in SARS-CoV infections. Though we have reported the utility of this approach in bacterial and cell culture studies previously, this is the first comprehensive study to confirm that network topology can be used to predict phenotypes in mice with experimental validation
Optomechanical interactions in non-Hermitian photonic molecules
We study optomechanical interactions in non-Hermitian photonic molecules that support two photonic states and one acoustic mode. The nonlinear steady-state solutions and their linear stability landscapes are investigated as a function of the system\u27s parameters and excitation power levels. We also examine the temporal evolution of the system and uncover different regimes of nonlinear dynamics. Our analysis reveals several important results: (1) parity-time () symmetry is not necessarily the optimum choice for maximum optomechanical interaction. (2) Stable steady-state solutions are not always reached under continuous wave optical excitations. (3) Accounting for gain saturation effects can regulate the behavior of the otherwise unbounded oscillation amplitudes. Our study provides a deeper insight into the interplay between optical non-Hermiticity and optomechanical coupling and can thus pave the way for new device applications
- …
