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The simulation of spectroscopic observables for molecular aggregates with strong and structured coupling of electronic
excitation to vibrational degrees of freedom is an important but challenging task. The hierarchy of pure states (HOPS)
provides a formally exact solution based on local, stochastic trajectories. Exploiting the localization of HOPS for the
simulation of absorption spectra in large aggregares requires a formulation in terms of normalized trajectories. Here
we provide a normalized dyadic equation where the ket- and bra-states are propagated in different electronic Hilbert
spaces. This work opens the door to apply adaptive HOPS methods for the simulation of absorption spectra and also to
a formulation for non-linear spectroscopy that is perturbative with respect to interactions with the electric field.

I. INTRODUCTION

The photophysics of molecular aggregates plays a central
role in light harvesting by both artificial materials and pho-
tosynthetic organisms.1–4 Optical absorption is a simple, yet
powerful, probe of the delocalized excited states (excitons)
formed in molecular aggregates. The basic molecular ex-
citon theory treats each chromophore as an electronic two-
level (or few-level) system coupled to molecular vibrations
and a continuum of vibrational degrees of freedom which
are responsible for energy dissipation and electronic dephas-
ing (described by the spectral density).2,5–8 When the cou-
pling between the electronic states of the chromophore and
the system-environment coupling are of similar magnitudes,
then perturbative treatments are inappropriate; when the vi-
brational modes are highly structured it is essential to account
for non-Markovian effects. From a theoretical point of view,
it is thus of great importance to develop approaches which are
capable of treating exciton dynamics at finite temperature in a
non-perturbative and non-Markovian manner.

While open quantum system methods appropriate to molec-
ular excitons have typically used density matrices,9–17 wave
function methods have been gaining popularity. Beside meth-
ods that simultaneously propagate electronic and vibrational
degrees of freedom (see e.g Refs.18–26 ), it is also possible
to propagate only the relevant electronic degrees of freedom
(or occasionally vibronic) subject to a stochastic force term
that is constructed to ensure the ensemble reproduces the cor-
rect density matrix. One of these stochasic approaches is the
non-Markovian quantum state diffusion (NMQSD).27–29 The
evolution equations in NMQSD come in two flavours: a lin-
ear equation, where individual wave functions are not normal-
ized, and a non-linear one, where each wave function is prop-
erly normalized ensuring more efficient convergence of the
ensemble.

The hierarchy of pure states (HOPS)30,31 is a formally ex-
act way to handle the general NMQSD equation. In HOPS

the non-Markovian influence of the bath degrees of freedom is
captured by a hierarchy of vectors in the system Hilbert space
that evolve subject to a Gaussian stochastic noise that shares
a correlation function with the environment. Averaging over
the stochastic noise trajectories reproduces the complete sys-
tem dynamics. One appealing feature of NMQSD and HOPS
is that dynamics are localized by interaction with the thermal
environment which allows adaptive algorithms to calculate
dynamics in molecules aggregates composed of thousands of
particles.32,33

The ability to connect exciton dynamics as obtained by
HOPS with spectroscopic observables is essential. For HOPS
calculations, the linear absorption spectrum can be calculated
exactly using a single trajectory by setting the noise trajectory
equal to zero. The full cancellation of noise terms, however,
does not directly extend to non-linear spectroscopic calcula-
tions. Furthermore, the zero-noise trajectory does not show
dynamic localization and therefore cannot be solved using ef-
ficient adaptive algorithms which exploit the localization of
single trajectories. These constraints greatly limits the appli-
cability of HOPS for simulating non-linear spectroscopy or
even linear spectra of large molecular aggregates.

Here, we provide a framework for simulating linear absorp-
tion using stochastic HOPS equations. One particular goal is
to connect the HOPS approach, where pure states are prop-
agated to the common formulation of spectroscopy in terms
of dyadic states, where the bra and ket can be in different
electronic states and are propagated separately. Such a dyadic
propagation scheme is symbolically displayed in the form of
a so-called double-sided Feynman diagram, as displayed in
Fig. 1. We demonstrate that by expressing the density matrix
after the first interaction with an electric field as a sum over
pure states, we can write a simple equation that is equivalent
to propagating the bra and ket side of the initial density ma-
trix separately according to HOPS. For a dyadic propagation
scheme it is not obvious how to construct the normalization
of the non-linear NMQSD equation. We find an correct nor-
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Figure 1. Sketch of the dyadic scheme to calculate linear absorption.
Initially the aggregate is in the electronic ground state g, represented
by the density matrix

∣

∣g
〉〈

g
∣

∣. Interactions with the electromagnetic
field are indicated by incoming and outgoing arrows. The dipole
operator then brings the ket into the excited state

∣

∣ψex
〉

; the density
matrix is in the state

∣

∣ψex
〉〈

g
∣

∣. Finally, the dipole operator brings
the excited state back to the electronic ground state, and the trace is
taken. For further details about the formalism see Ref. 34

malization contains contributions from both the bra and ket,
coupling the two time-evolution equations. We study in detail
the convergence of the dipole-dipole correlation function with
the number of stochastic trajectories using both the linear and
non-linear HOPS equations. We find that both, the linear and
the non-linear equation are well behaved at the single trajec-
tory level and show good convergence properties. Remark-
ably, this hold even in regimes where the linear HOPS fails
catastrophically for the calculation of site populations.

The paper is organized as follows: In section II we intro-
duce the open quantum system formulation of the molecular
aggregate and provide the NMQSD framework and the lin-
ear and the non-linear HOPS equations. In section III, which
contains our central results, we formulate absorption in terms
of stochastic NMQSD trajectories and we establish a dyadic
HOPS formulation. In section IV we demonstrate the appli-
cability of our formulas and investigate the convergence with
respect to the number of trajectories. Finally, in section V we
summarize our findings and we conclude with an outlook.

Throughout the work we use h̄ = 1.

II. BACKGROUND

A. Open quantum system description of the aggregate

We consider a molecular aggregate consisting of N inter-
acting chromophores embedded in a condensed phase envi-
ronment such as a solvent, protein, or solid matrix. In the
language of open quantum system, the Hamiltonian for the
aggregate can be written as2

Ĥ = ĤS + ĤB+ ĤSB (1)

with ĤS, ĤB, and ĤSB denoting the system Hamiltonian, the
environment (bath) Hamiltonian, and the system-bath interac-
tion Hamiltonian, respectively. The system Hamiltonian ĤS

describing the Frenkel-exciton reads

ĤS = Ĥg + Ĥex (2)

with the ground state and excited state Hamiltonians

Ĥg = εg|g〉〈g| (3)

Ĥex =
N

∑
n=1

εn|n〉〈n|+
N

∑
n 6=m

Vnm|n〉〈m|, (4)

where εg is the energy in the ground state, εn is the site energy
of the nth molecule, |n〉 is the state describing the nth excited
molecule, and Vnm is the electronic coupling between excited
states of molecules n and m. Each chromophore is coupled
to inter- and intra-molecular vibrations which can be modeled
as a collection of harmonic oscillators. In what follows, we
assume each molecule is coupled to an independent collection
of vibrations. We thus have the bath Hamiltonian

ĤB =
N

∑
n=1

∑
q

ωnqb̂†
nqb̂nq (5)

where b̂†
nq (b̂nq) are the creation (annihilation) operator of qth

mode of chromophore n with frequency ωnq. The system-bath
coupling Hamiltonian ĤSB is expressed as

ĤSB =−
N

∑
n=1

L̂n ∑
q

gnq

(

b̂†
nq + b̂nq

)

(6)

with system coupling operators

L̂n =
∣

∣n
〉〈

n
∣

∣ (7)

and gnq is the exciton-bath coupling strength of the qth bath
mode for chromophore n. The influence of the vibrational
modes on the dynamics of the electronic system is described
by the bath-correlation function

αn(τ) =

∫ ∞

0
dω Jn(ω)

(

coth
(β ω

2

)

cos(ωτ)− isin(ωτ)
)

(8)

that contains the spectral density Jn(ω)=∑q |gnq|2δ (ω−ωnq)
and the inverse temperature β = 1/T .

B. Non-Markovian quantum state diffusion (NMQSD) and
the Hierarchy of Pure States (HOPS)

For a separable initial state

ρ̂ini =
∣

∣ψini
〉〈

ψini
∣

∣⊗ ρ̂B (9)

the expectation value of a system operator F̂ can be expressed
as

〈F̂(t)〉= Tr[F̂ ρ̂(t)] =M[
〈

ψ(t,z∗)
∣

∣F̂
∣

∣ψ(t,z∗)
〉

] (10)
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where M[· · · ] denotes ensemble average over realizations of
stochastic trajectories which obey the (linear) non-Markovian
quantum state diffusion (NMQSD) equation27,28

∂t |ψ(t,z∗)〉=− iĤS|ψ(t,z∗)〉
+∑

n

L̂nz∗t,n|ψ(t,z∗)〉

−∑
n

L̂†
n

∫ t

0
dsαn(t − s)

δ |ψ(t,z∗)〉
δ z∗s,n

(11)

where |ψ(t,z∗)〉 is a vector in the system Hilbert space
and z comprises complex Gaussian stochastic processes z∗t,n
with mean M[zt,n] = 0, and correlations M[zt,nzs,m] = 0,
and M[zt,nz∗s,m] = αn(t − s)δnm. The important non-linear
NMQSD equation is obtained by making in the above equa-
tion the following replacements:28 L̂†

n → L̂†
n −〈L̂†

n〉t and z̃t,n =

z∗t,n +
∫ t

0 dsα∗
n (t − s)〈L̂†

n〉s. Expectation values 〈·〉t are calcu-
lated using the normalized state.

The hierarchy of pure states (HOPS) is a formally exact
solution to the open quantum system model discussed in the
previous sections within the NMQSD framework. HOPS re-
quires the bath correlation function αn(τ) to be expanded as a
sum of exponentials

αn(τ)≈
J

∑
j=1

pn je
−wn jτ (12)

where wn j = γn j + iΩn j. Assuming, each molecule has the
same bath correlation function, then the linear HOPS equation
is

∂t |ψ(k)(t,z∗)〉

=
(

− iĤS −k ·w+∑
n

L̂nz∗t,n
)

|ψ(k)(t,z∗)〉

+∑
n

L̂n ∑
j

kn j pn j|ψ(k−en j)(t,z∗)〉

−∑
n

L̂†
n ∑

j

|ψ(k+en j)(t,z∗)〉

(13)

where w = {w1,1, · · · ,wN,J}, and k = {k1,1, · · · ,kN,J} with
non-negative integers kn j. The appearance of z in |ψ(t,z∗)〉 in-
dicates that the state depends on the complete set of stochastic
processes up to time t. With ∗ we denote complex conjugate.
The physical wave function is given by |ψ(0)(t,z∗)〉 while the
remaining terms are ‘auxiliary wave functions’ and represent
the influence of the finite memory time of the bath on the
time evolution of the electronic state. The time evolution of
the reduced density matrix associated with the system degrees
of freedom is given by ρ̂(t) = M

[

|ψ(0)(t,z∗)〉〈ψ(0)(t,z∗)|
]

.
HOPS consists of infinite set of coupled equations, which can
be truncated at a finite number of hierarchy elements, for ex-
ample using the triangular truncation condition for the hier-
archy where only auxiliary states with |k| ≤ K are taken into
account, more flexible scheme to truncate the HOPS can be
found in Ref. 35.

The non-linear version of the HOPS equation reads

∂t |ψ̃(k)(t,z∗)〉=
(

− iĤS−k ·w+∑
n

L̂nz̃t,n

)

|ψ̃(k)(t,z∗)〉

+∑
n

L̂n ∑
j

kn j pn j|ψ̃(k−en j)(t,z∗)〉

−∑
n

(

L̂†
n −〈L̂†

n〉t

)

∑
j

|ψ̃(k+en j)(t,z∗)〉.

(14)

Here, z̃t,n = z∗t,n +
∫ t

0 dsα∗
n (t − s)〈L̂†

n〉s. Expectation values 〈·〉t

are calculated using the normalized physical state

∣

∣Ψ(0)(t,z∗)
〉

=

∣

∣ψ̃(0)(t,z∗)
〉

√

〈ψ̃(0)(t,z∗)|ψ̃(0)(t,z∗)〉
. (15)

We emphasize that in particular for strong coupling the non-
linear equation is essential to ensure convergence. Also for
adaptivity the non-linear normalized equation is very benefi-
cial.

III. LINEAR SPECTRA FROM STOCHASTIC
TRAJECTORIES

To calculate absorption spectra of the aggregate, we need to
extend the Hamiltonian to include the interaction of the elec-
tronic system with the external electric field34

ĤL =−
N

∑
n

(

(µn ·ε)E(t)
)

|n〉〈g|+ h.c. (16)

where µn is the transition dipole moment of chromophore n,
and ε and E(t) are the polarization and the envelope of the
laser pulse, which we have taken to be constant over the size
of the aggregate. Our results can be easily extended to electric
field that vary from molecule to molecule, as needed for exam-
ple for circular dichroism36 or for near-field spectroscopy.37,38

The linear absorption spectra (A(ω)) is given by the
Fourier transformation

A(ω) = Re
∫ ∞

0
dt eiωtC(t) (17)

of the dipole-dipole auto-correlation function34

C(t) = Tr
{

µ̂eff e−iĤt
(

µ̂eff|g〉〈g|⊗ ρ̂B
)

eiĤt
}

(18)

where µ̂eff is the scalar, collective dipole moment operator

µ̂eff =
N

∑
n

(µn ·ε) |n〉〈g|+ h.c. (19)

and ρ̂0 = |g〉〈g|⊗ ρ̂B is a factorized initial total density matrix

with ρ̂B = e−β ĤB/TrB

{

e−β ĤB

}

being the density matrix of

the thermal bath.
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A. Pure state decomposition of initial density matrix

The NMQSD framework cannot directly applied to the ex-
pression (Eq. 18), since the initial state µ̂eff

∣

∣g
〉〈

g
∣

∣ is not pure.
To construct the correlation function in terms of pure states,
we follow the approach of Hartmann and Strunz.39 We find
the decomposition

µ̂eff
∣

∣g
〉〈

g
∣

∣=
1
2

µtot ∑
η∈{±1,±i}

η
∣

∣vη

〉〈

vη

∣

∣ (20)

into pure states given by

∣

∣vη

〉

=
1√
2
(
∣

∣ψex
〉

+η
∣

∣g
〉

), η ∈ {±1,±i} (21)

where

∣

∣ψex
〉

=
1

µtot
µ̂eff

∣

∣g
〉

=
1

µtot

N

∑
n=1

(µn ·ε)
∣

∣n
〉

(22)

µtot =

√

N

∑
n=1

(µn ·ε)2 (23)

and µtot is the total transition strength.
With this pure state decomposition, the dipole-dipole auto-

correlation function can be written as a sum over contributions
from each pure state and accordingly each pure state contri-
bution can be treated within the NMQSD framework. Using
Eq. (10) one finds

C(t) =
1
2

µtot ∑
η∈{±1,±i}

η M[
〈

vη(t,z
∗)
∣

∣µ̂eff
∣

∣vη(t,z
∗)
〉

] (24)

where
∣

∣vη(t,z
∗)
〉

denotes the time evolved states
∣

∣vη

〉

accord-
ing to the NMQSD equation in the full Hilbert space.

B. Direct propagation of the dyadic equation

The correlation function can be calculated by directly prop-
agating a single initial state defined in the one exciton man-
ifold. We will demonstrate that this method is equivalent to
propagating a dyadic equation where the bra and ket states are
independently propagated to construct the correlation func-
tion.

First, we will simplify the time evolution of the pure state
components of the correlation function to separate the excited
state and ground state dynamics. We note that the Hamiltonian
(Eq. 1) does not couple the electronic ground state

∣

∣g
〉

and the
single exciton states

∣

∣n
〉

: the system Hamiltonian has the form
ĤS = Ĥg+Ĥex and the system-bath coupling Hamiltonian acts
only in the one-exciton space. Therefore, initial states of the
form of Eq. 21 will evolve under the NMQSD equation to give

∣

∣vη (t,z
∗)
〉

=
1√
2

(∣

∣ψex(t,z
∗)
〉

+ηe−iεgt
∣

∣g
〉

) (25)

where
∣

∣ψex(t,z
∗)
〉

denotes the state that is obtained upon
evolving the initial state

∣

∣ψex
〉

with the NMQSD equation re-
stricted to the one-exciton space (i.e. replacing ĤS by Ĥex in
Eq. (11), and correspondingly in the HOPS equations).

Using this result together with the explicit form of the col-
lective dipole operator (Eq. (19)) we find that the terms ap-
pearing in Eq. (24) have the form

〈

vη(t,z
∗)
∣

∣µ̂eff
∣

∣vη(t,z
∗)
〉

=
1
2

η∗µtot 〈ψex|ψex(t,z
∗)〉eiεgt +h.c.

(26)
Recognizing that

η
〈

vη(t,z
∗)
∣

∣µ̂eff
∣

∣vη (t,z
∗)
〉

=
1
2

µtot |η |2〈ψex|ψex(t,z
∗)〉eiεgt

+
1
2

µtot η2〈ψex(t,z
∗)|ψex〉e−iεgt

(27)

where |η |2 = 1 for all η =±1,±i then the four contributions
to the correlation function simplify (due to cancellation) to
give

C(t) = µ2
totM[〈ψex|ψex(t,z

∗)〉]eiεgt . (28)

Eq. 28 is our central result and shows that the dipole cor-
relation function can be calculated by propagating the initial
state

∣

∣ψex
〉

= ∑N
n=1

(µn·ε)
µtot

∣

∣n
〉

with the NMQSD equation up
to time t and then project on the same initial state again. The
average over many such trajectories will reproduce the ensem-
ble correlation function. Note that the form of Eq. (28) is very
similar to that of the noiseless equation.36

It is easy to see (details can be found in appendix B 2) that
Eq. 28 can be written as

C(t) = µtotM
[

TrS

{

µ̂eff
∣

∣ψex(t,z
∗)
〉〈

g(t)
∣

∣

}]

(29)

with
∣

∣g(t)
〉

= e−iĤgt
∣

∣g
〉

, which can also be written as

C(t) =M
[

TrS{µ̂eff (Ûex(t,z
∗)µ̂eff

∣

∣g
〉

)
〈

g
∣

∣Û†
g (t)}

]

(30)

where Ûex(t,z
∗) denotes the stochastic propagator in the

excited state manifold, i.e. evolution with the respective
NMQSD equation40 We see that this equation has now exactly
the form of a dyadic scheme as sketched in Fig. 1: The bra is
during the whole time evolution propagated in the electronic
ground state. The ket is first lifted via µ̂eff to the excited state
manifold where it is then propagated during the time period t.
Finally, µ̂eff is applied again and the trace is taken. One has
to be careful about the formal meaning of the stochastic state
∣

∣ψex(t,z
∗)
〉

in the case of the non-linear NMQSD equation.
We will discuss this in detail in the next section.

C. Dyadic non-linear HOPS equation

While we have demonstrated that the NMQSD equations
can be used to directly propagate a dyadic equation for the
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Figure 2. Example calculations for the case of a bath-correlation function described by one exponential with Ω = 1.0 and γ = 0.25Ω. Two
cases of the coupling strength are shown: intermediate coupling p = 0.5 (left box) and strong coupling = 2 (right box). The dipole-dipole
coupling between the monomer is V = Ω. In each box we show the following: (a) Monomer spectrum. (b) real and imaginary parts of C(t), (c)
absorption spectrum calculated by the linear HOPS equation. (d) real and imaginary parts of C(t), (e) absorption spectrum calculated by the
non-linear HOPS equation. The truncation depth of the hierarchy for HOPS are K = 6 (p = 0.5) and K = 12 (p = 2). The noise-free HOPS
calculations are performed using the formulas provided in appendix A. For the stochastic calculations Eq. (28) and Eq. (33) are used for the
linear and non-linear HOPS, respectively.

dipole-dipole auto-correlation function, but care is required to
establish the corresponding non-linear HOPS equation. In the
non-linear form of the starting equation Eq. (28) one propa-
gates the pure state vectors

∣

∣ṽη(t,z
∗)
〉

according to Eq. (14) in
the total Hilbert space spanned by the singly excited states

∣

∣n
〉

and the ground state
∣

∣g
〉

. It has the same form as the Eq. (25)
∣

∣ṽη(t,z
∗)
〉

= 1√
2

(∣

∣ψ̃ex(t,z
∗)
〉

+ηe−iεgt
∣

∣g
〉

), where
∣

∣ψ̃ex(t,z
∗)
〉

is evolved according to the non-linear equation Eq. (14). To
perform expectation values one uses the normalized states

∣

∣Ṽη(t,z
∗)
〉

=

∣

∣ṽη (t,z
∗)
〉

||ṽη(t,z∗)||
(31)

with

||ṽη(t,z
∗)||2 ≡ 〈ṽη (t,z

∗)|ṽη(t,z
∗)〉

=
1
2
[〈ψ̃ex(t,z

∗)|ψ̃ex(t,z
∗)〉+ 1] .

. (32)

Note, that the last expression is independent of η , which
means that for all four initial state one has the same normal-
ization factor. Therefore, repeating the steps that leads form
Eq. (24) to Eq. (28) we now arrive at

C(t) = µ2
totM

[ 〈ψex|ψ̃ex(t,z
∗)〉

1
2 (||ψ̃ex(t,z∗)||2 + 1)

]

eiεgt . (33)

We emphasize, that here ψ̃ex(t,z
∗) is propagated with the non-

linear Eq. (14) in the excited state manifold only, but using ex-
pectation values 〈L†

n〉t calculated with respect to the normal-
ized state

∣

∣ψ̃ex(t,z
∗)
〉

/
√

(||ψ̃ex(t,z∗)||2 + 1), which contains
a ground state contribution in the normalization.

IV. NUMERICAL CALCULATIONS

In this section, we investigate the numerical performance of
our dyadic equation (Eq. (28)) using both the linear (Eq. (13))
and non-linear (Eq. (14)) HOPS equations and compare their
convergence with respect to the number of trajectories. In the
following, we will calculate the linear absorption spectra for a
homodimer (εn = ε) with electronic coupling V = 1, where the
transition dipoles of both chromophores are parallel. We use a
simple bath correlation function αn(τ) = α(τ) = pe−iΩτ−γ|τ|

where γ = 0.25. Here, and in the following, we choose Ω
as the unit of energy and express p in units of (Ω)2. The
truncation constant for the HOPS, K, defined after Eq. (13),
is provided in the respective plots and is always chosen large
enough to be well converged in the hierarchy.

In Fig. 2 we demonstrate that both linear and non-linear
HOPS are reasonably converged using a rather small number
of trajectories for both p = 0.5 (left box) and p = 2 (right
box). For both cases the spectrum of the monomer is shown
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Figure 3. Analysis of the error of the stochastic equations compared to the noiseless reference. We consider the same parameters as in Fig. 2.
Top: The distribution of errors for four different numbers of trajectories, for both the linear and the non-linear HOPS. Bottom: The mean error
of A(ω) as a function of Ntraj. The straight lines are guides for the eye and indicate a scaling of the mean error as r0

√

Ntraj

in the top row. In the second row the numerically calculated
correlation function of the dimer are shown, for both the lin-
ear and non-linear HOPS along with the reference spectrum
calculated using the noise-free HOPS algorithm. The bottom
row shows the corresponding absorption spectra.

We quantify the convergence with respect to the num-
ber of trajectories using non-parametric error estimation and
find the stochastic HOPS calculations converge roughly with
1/

√

Ntraj, with the non-linear HOPS showing overall faster
convergence. We quantify the difference between the stochas-
tic (A(ω)) and reference (Aref(ω)) spectrum using

error =
1

ωmax −ωmin

∫ ωmax

ωmin

∣

∣A(ω)−Aref(ω)
∣

∣dω (34)

where the integration extend over the region of ω in which
one is interested in (we take the ω range shown in Fig. 2).
Note that according to this definition the error is proportional
to µ2

tot, which in the case shown is equal to 2. In Fig. 3 (up-
per panels) we compare the distribution errors calculated from
average spectra for different ensembles with fixed Ntraj = 100,
1000, 5000, and 10000 (see appendix C for details). In all
cases the non-linear HOPS calculation has error that is ap-
proximately half that of the linear HOPS and both have a
slightly asymmetric distribution with a full width at half max-
imum roughly half of their mean. In the bottom row of Fig. 3
we show the mean values as a function of Ntraj on a log-log
scale, where the solid line provides a guide for the expected
scaling of a mean error proportional to 1/

√

Ntraj.
These results demonstrate that both the linear and non-

linear HOPS can produce accurate correlation function C(t)
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Figure 4. Population dynamics of site 1 for p = 0.5 (a) and p = 2
(b). The other parameters of the model are the same as in Fig. 2 and
Fig. 3. The number of trajectories used in both linear and non-linear
HOPS is 10000. One sees clearly that for population dynamics the
linear HOPS does not converge for the parameters considered. The
truncation depth of the hierarchy for HOPS and HEOM are K = 6
and 7 for (a), K = 16 and 18 for (b), respectively.

and absorption spectra A(ω). We note that for the strong
coupling regime presented here, the linear HOPS converges
very slowly for population transfer. Fig. 4 compares the pop-
ulation dynamics of site 1 calculated by linear (red line) and
non-linear (blue line) HOPS for the two values p = 0.5 and
p = 2 with the exact HEOM calculations (black line). While
non-linear HOPS with 10000 trajectories produces very accu-
rate population dynamics, the linear HOPS starts to deviate
from the exact results at short time and completely fails to de-
scribe the population dynamics at longer time. This inability
of linear HOPS to describe the strong coupling regime is well
known for population dyanmics. That linear HOPS can repro-
duce absorption spectra is a consequence of the cancellation
of noise that can be clearly understood in the context of the
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pure state decomposition.

V. CONCLUSIONS

We derived stochastic propagation schemes for the calcula-
tion of absorption spectra within the NMQSD approach, using
both the linear and the non-linear NMQSD equation. Beside
a scheme that relies on formally propagating pure states in
the full Hilbert-space, we derived a scheme, where individual
propagations in the electroinc ground and electronic excited
state are used to obtain the desired spectrum. This scheme di-
rectly resembles the diagrammatic perturbation theory where
dyadic matrices are propagated. While for the linear NMQSD
equation the two propagations are completely independent,
for the nonlinear NMQSD they become coupled via a com-
mon normalization factor that contains the norm of the two
wavefunctions in the different Hilbert-spaces. Besides its fa-
vorable convergence properties with respect to the number of
trajectories, this non-linear normalized version will allow a di-
rect implementation of adaptive algorithms. We investigated
the convergence with respect to trajectories Ntrajin detail and
found that the error decreases as 1/

√

Ntraj with the linear ver-
sion needing roughly twice the number of trajectories as the
non-linear one to achieve the same accuracy. This behaviour
of linear equation is remarkable, since we worked in a pa-
rameter regime where population dynamics does not converge
for the linear NMQSD and our decomposition into pure states
does not lead to a cancellation as was found in Ref. 39.

We have formulated the absorption spectrum in terms of
propagating a single initial state in the electronic excited state.
This state contains all the information of the dipoles (magni-
tude and orientation) of the individual molecules as well as
the local fields at these molecules (for ease of notation we
used the same electric field for all molecules). Since arbitrary
distributions of the electromagnetic field can be treated, the
formalism can be directly applied to the calculation of circu-
lar dichroism or near-field spectra. We note that similar to
the treatment of Ref. 36, one can also construct the spectrum
from an summation of initially localized states, with the cor-
rect wheighting factors. Such a scheme will be beneficial for
an adaptive treatment.

We would like to remark, that our derivations relies on the
assumption that decay processes from excited to ground state
are negligible (as we have already used in the starting Hamil-
tonian). This is the case in many relevant situations, where
these processes are on the nanosecond timescale, compared
to a few femtoseconds that are needed to find well resolved
spectra. While such coupling between ground and excited
electronic states can be directly treated using the decompo-
sition into pure states and propagating via NMQSD in the full
electronic Hilbert space, presumably the dyadic equation will
need major modifications.

We demonstrated the applicability of our schemes explic-
itly using the HOPS formulation of NMQSD. It should be
noted that our equation are formulated for arbitrary temper-
atures. Within HOPS there are different ways how to inco-
operate temperature either in the hierarchy36 or in additional

stochastic processes.31 Because our schemes propagate single
trajectories subject to noise, it is straightforward to account
for the effect of the static disorder induced by the inhomo-
geneity of the environment without much additional computa-
tional cost. Since the HOPS provides efficient treatment of the
environmental degrees of freedom and furthermore one prop-
agates vectors instead of matrices the propagation schemes
offer promising techniques to simulate absorption spectra of
large molecular aggregates with complicated structured envi-
ronments. Our dyadic HOPS equation is also an important
step towards application of HOPS for non-linear spectroscopy.
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Appendix A: Linear absortion using HOPS without noise

It is demonstrated in Ref. 36 that for the calculation of ab-
sorption spectra, one can propagate the linear HOPS equa-
tion (Eq. 13) without noise, i.e. with all zt,n = 0. The dipole-
correlation function is calculated accoring to

C(t) = µ2
tot〈ψex|ψ(0)

ex (t)〉 (A1)

with

∂t |ψ(k)
ex (t)〉=

(

−iĤS −k ·w
)

|ψ(k)
ex (t)〉

+∑
n

L̂n ∑
j

kn j pn j|ψ(k−en j)
ex (t)〉

−∑
n

L̂†
n ∑

j

|ψ(k+en j)
ex (t)〉

(A2)

and the initial condition |ψ(0)
ex (t=0)〉=

∣

∣ψex
〉

.

Appendix B: Calculations for the Hartmann-Strunz approach

1. Writing the initial operator as a sum of pure states

To obtain equation (20) we first rewrite µ̂eff
∣

∣g
〉〈

g
∣

∣ as the
sum of two hermitian matrices,

µ̂eff
∣

∣g
〉〈

g
∣

∣=
1
2

(

Â+ B̂
)

(B1)
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with

Â =
{

µ̂eff ,
∣

∣g
〉〈

g
∣

∣

}

=
N

∑
n=1

(µn ·ε)
(

∣

∣n
〉〈

g
∣

∣+
∣

∣g
〉〈

n
∣

∣

)

(B2)

B̂ =
[

µ̂eff ,
∣

∣g
〉〈

g
∣

∣

]

=
N

∑
n=1

(µn ·ε)
(

∣

∣n
〉〈

g
∣

∣−
∣

∣g
〉〈

n
∣

∣

)

(B3)

The eigenvalues and eigenvectors of these two operators can
be calculated analytically

Â
∣

∣v±1
〉

=±µtot
∣

∣v±1
〉

(B4)

B̂
∣

∣v±i

〉

=±iµtot
∣

∣v±i

〉

(B5)

where the eigenvectores are that defined in Eq. (21) of the
main text.

2. Derivation of the dyadic equation

Here we show, that the dyadic equation (29) is identical to
Eq. (28). We start with Eq. (29)

µtotM
[

TrS

{

µ̂eff
∣

∣ψex(t,z
∗)
〉〈

g(t)
∣

∣

}]

= µtotM
[

TrS

{

µ̂eff
∣

∣ψex(t,z
∗)
〉

eiεgt
〈

g
∣

∣

}]

= µtotM
[

〈

g
∣

∣µ̂eff
∣

∣ψex(t,z
∗)
〉

eiεgt
]

= µ2
totM

[

〈ψex|ψex(t,z
∗)〉eiεgt

]

(B6)

where in the first step we used
〈

g(t)
∣

∣= eiεgt
〈

g
∣

∣, in the second
step we evaluated the trace and in the last step we have used
Eq. (22). We see that the last line is identical to Eq. (28).

Appendix C: Analysis of the statistic error by the
bootstrapping method

To get a quantitative description of the convergence proper-
ties of linear and non-linear HOPS with respect to the number
of trajectories, we conduct a detailed analysis of the statistic
error due to a finite number of trajectories by using the boot-
strapping technique41. To this end, we first calculate 3× 104

trajectories. For each value of Ntraj, we construct 104 ensem-
bles by selecting Ntraj trajectories randomly from the original
3× 104 trajectories (the same trajectory can appear multiple
times within each ensemble). For each ensemble, we quan-
tify the error by evaluating the average absolute difference of
A(ω).
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