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Optomechanical interactions in non-Hermitian photonic molecules
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Abstract
We study optomechanical interactions in non-Hermitian photonicmolecules that support two
photonic states and one acousticmode. The nonlinear steady-state solutions and their linear stability
landscapes are investigated as a function of the system’s parameters and excitation power levels.We
also examine the temporal evolution of the system and uncover different regimes of nonlinear
dynamics. Our analysis reveals several important results: (1) parity-time ( ) symmetry is not
necessarily the optimumchoice formaximumoptomechanical interaction. (2) Stable steady-state
solutions are not always reached under continuouswave optical excitations. (3)Accounting for gain
saturation effects can regulate the behavior of the otherwise unbounded oscillation amplitudes. Our
study provides a deeper insight into the interplay between optical non-Hermiticity and optomecha-
nical coupling and can thus pave theway for newdevice applications.

1. Introduction

Cavity optomechanics has attracted considerable attention on both theoretical and experimental fronts during
the past decade [1–4]. This was largely enabled by the rapid increase of computational power that allowed for
accurate simulations of optomechanical coupling, and the recent progress in fabrication andmeasurement
techniques that led to experimental observation of this interaction in differentmaterial setups. Nowadays,
optomechanical interactions are being utilized in various applications such as gravitational wave detectors [5, 6],
quantummemories [7] and acceleration sensors [8], just tomention a few. Furthermore, optical cooling of
macroscopicmechanical oscillators [9] provides a unique opportunity to study the classical-quantum
correspondence.

A different notion that has gained a lot of attention recently is parity-time ( ) symmetrywhere it was
shown that certain  symmetricHamiltonians can posses real spectra [10]. This concept was later extended to
optics [11–14], where its experimentalmanifestations were observed for the first time in optical systemswith
engineered gain and loss profiles [15], as well as other fields (see, e.g., [16]). Noteworthy,most of the intriguing
features of  symmetric structures also persist for thewider class of non-Hermitianmaterial that do not
necessarily respect  symmetry. For example, the existence of the spectral singularities known as exceptional
points (EPs) do not require  symmetry and can occur in a general non-Hermitian system [17–19]. The ability
tomanipulate light in photonic systems by controlling these singularities has opened the door for new device
applications such as singlemodemicroring lasers [20, 21] and light sources based on non-Hermitian phase
matching [22].

Recently, themarriage between the two themes of optomechanics and  symmetry has been proposed
[23]. In particular, this pioneeringwork has investigated the optomechanical coupling in a phonon laser (or
saser) structure similar to those studied in [24] but with the additional ingredient of  symmetry. The analysis
in [23] predicted in particular a giant enhancement of the optomechanical coupling strength around the EPs.
However, not all important questions regarding the stability and dynamics of the systemhave been answered in
this work.

In order tofill in this gap, we perform a comprehensive analytical and numerical investigation of
optomechanical interactions in non-Hermitian photonicmolecules similar to those considered in [23].We
characterize the nonlinear steady-state solutions and the stability properties in terms of the optical and acoustic
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design parameters aswell as the optical pumping power levels and frequencies. Furthermore, we study the
dynamical evolution of the system and show that different regimes of operations can be identified based on the
design parameters, excitation power levels and the frequency detuning. Our study reveals several important
results: (1) themaximumachievable optomechanical interaction enhancement for stable steady-state solutions
does not occur in the neighborhood of the  phase transition point, and (2) depending on the design
parameters, pumpproperties and gain saturation effects, different regimes of nonlinear dynamics such asfixed
points and sustained oscillations are possible.

2. System andmodel

In this workwe consider a photonicmoleculemade of two optically identical resonators that supports two
photonic supermodes and one acousticmode as shown schematically infigure 1. Similar to thework in [23–29],
the acousticmode is assumed to be localized only in one of these cavities and is characterized by a resonant
frequency wm, damping coefficientΓ and an effectivemassm, while the optomechanical coupling is
characterized by the coupling constant g. The uncoupled photonic states of the two resonators have identical
resonant frequencies w0 and quality factors (not necessarily the same) quantified by the inverse of the radiation
loss coefficients a1,2. The optical coupling coefficient between the two resonators is given by J. Furthermore,
additional gain or loss factors g̃1,2 can be engineered by an appropriate design of thematerial system (for instance
by doping the resonatorwith gain/lossmaterial and applying different optical pumping conditions) [23]. The
optical excitation is achieved through awaveguide coupled to the acoustically active cavitywith a coupling
constantμ. As a result, the total net gain/loss in each resonator is described by the coefficients

˜g g a m= - -1 1 1 and ˜g g a= -2 2 2. Note that these values can be either positive or negative depending on
whether the net effect is optical amplification or decay. In our study, we do not discuss in detail how these gain/
loss parameters can be controlled (see [23] formore details on that subject) but rather focus on how their values
affect the dynamics.

Under these conditions and by neglecting quantum correlations and fluctuations, the equations ofmotion
for the (complex) classical opticalfield amplitudes a1,2 in the two resonators and the (real) acoustic oscillator
displacement x respect the following nonlinear systemof differential equations [3, 23, 27, 30–32]:

˙ ( ) ( )g m= - D + - +a a Ja f ai i 2 , 11 1 1 2 0

˙ ( ) ( )g= - D + - -a a Ja ga x bi i i , 12 2 2 1 2

˙ ∣ ∣ ( )
w= -G - +x x x

g

m
a c¨ . 1m

2
2

2

Here,Δ denotes the laser detuning w wD = - L0 , andμ is the coupling rate between thewaveguide and the
resonator a1.

Note that the above equations arewritten in the rotating frame of reference of the optical excitation signal
( ) ( )w= -f t f texp i Lin 0 , where f0 is the amplitude of the external excitation laser and wL is its frequency. The

powerPin of the excitation laser transmitted to the resonator a1 can be obtained from f0 via ∣ ∣w=P fLin 0
2 [27].

In the absence of any non-Hermiticity, the above systemwas reported to operate as a saser (acoustic laser)
device where the frequency splitting between the photonic supermodes of the photonicmolecule can be treated
as a two-level system that can provide acoustic gain for themechanicalmode [24].

Figure 1.A schematic of the optomechanical systemunder consideration. It consists of two coupled optical resonators a1,2, each
having a finite quality factor and experiencing optical gain or loss due to optical or electrical pumping (not shown here). The gain/loss
profile across the cavities is in general asymmetric as indicated by their different colors. The halo surrounding resonator a2 indicates
that it supports a vibrationalmechanicalmode at frequency wm. Optical excitation of the system takes place via the evanescent
coupling between resonator a1 and an external waveguide.

2

New J. Phys. 18 (2016) 045014 DWSchönleber et al



Inwhat followswe do not emphasize the saser action picture presented in [23, 24] but rather treat the system
from the dynamical point of view.Note that we use the physical parameters summarized in table 1.

3. Steady-state solutions and their stability properties

3.1. Steady-state analysis
We start our analysis by investigating the steady-state solutions associatedwith the non-Hermitian
optomechanical interaction of the systemdepicted infigure 1.We do so by setting the time derivatives of a1,2 and
x to zero and solving equations (1) for the steady state xs of themechanical oscillator. This yields an algebraic
cubic polynomial equation that, in general, has three (possibly complex) different solutions. In the following, we
only discuss real solutions of xs, which correspond to a physical oscillator displacement.

To assess thefigure ofmerit for the optomechanical interaction in our system, wefirst consider a reference
systemwith both optical resonators having identical losses, i.e., g g= < 01 2 , before analyzing the full non-
Hermitian systemwith optical gain. The resultingmechanical steady-state amplitude xs,p in that latter case
serves as a reference to estimate the enhancement η of the system:

( )h =
x

x
. 2s

s,p

Here, the subscript p in equation (2) denotes the passive case, i.e., the case where both resonators have losses.
It is worth noting that in thework by Jing et al [23], a strong enhancement η of two orders ofmagnitude has

been foundwhen g g= -2 1under resonant excitation conditions, i.e.D = 0. Herewe also explore the case of
off-resonantD ¹ 0 driving. Besides, we note that that in [23] a different scaling of the optical amplitude f0 has
been used, i.e. g2 1 instead of m2 . Therefore, the enhancement values found in [23] are scaledwith respect to
the ones obtained in thismanuscript.

3.1.1. Analytical considerations
In order to gain an insight into the behavior of the systembeyond the full numerical solution of equations (1), we
first consider the opticalmodes only and ignore the driving termwhile accounting for the nonlinear interaction
between themechanical oscillator and optical amplitude a2 through a nonlinearly induced frequency shift. In
otherwords, we treat the steady-state displacement of themechanical oscillator xs as a parameter that effectively
introduces an additional detuningD º gxx s to the second cavity. Note that this detuning in reality depends on
the strength of the laser driving; a feature that is absent in this simplified analysis.Within this picture, the optical
amplitudes aremodeled by the following linear equations:

( ) ( ) ( )
g

g
¶ = -

D +

⎛
⎝⎜

⎞
⎠⎟

a
a

J

J
a
ai

i

i
. 3t

x

1

2

1

2

1

2

By diagonalizing equation (3), we obtain the eigenfrequencies of the two supermodes aswell as the associated
linewidths as given by the real and imaginary parts, respectively, of the complex frequencies

( ( ) ( ( )) ) ( )w g g g g= D + +  + D - - J
1

2
i 4 i . 4x x1 2

2
1 2

2

Hence, by scanning the frequency of the pump laser (represented byΔ in equations (1)) tomatch the real part of
either w, resonant interaction is expected to take place. From equation (4), the following important features
can be observed:

Table 1. List of the design parameters that we use
throughout themanuscript (see [23, 24, 27, 31])
for the numerical calculations.

Parameter Value

wm 23.4×2πMHz

w0 193×2πTHz

(corresponds to l m= 1.55 m0 )
g 5.61 GHz nm−1

m 5×10−11 kg

Γ 0.24 MHz

J 6.45 MHz

g0 6.45 MHz

μ 3.14 MHz

3
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(i) For antisymmetric gain/loss profile (g g= - < 02 1 ) and low laser power (  gD J ,x 1), we expect the

system to exhibit two sharp resonances at g -J 2
1
2 for g>J 1, while for g<J 1we expect a single broad

resonance at zero.

(ii) For smaller values of the gain coefficient, ∣ ∣g g< <0 1 2 with g < 02 and non-zero Dx, the square root in
equation (4) has both real and an imaginary parts, whichwe denote byR and ,I respectively. In this
regime, the resonance frequencies of the supermodes and their associated linewidths are given by
D 2 2x R and ( )g g+ 2 21 2 I , correspondingly andwe expect an asymmetric spectrum for
positive and negative laser detuning, respectively.

Our discussion so far has focused on the eigenfrequencies of the optical supermodes of the photonic
molecule in the absence of pumping. In order to gainmore insight into the system’s behavior, we now consider
the effect of the driving field in our simple picture, i.e., we add ( )m f2 , 00

T to the right-hand side of equation (3),
where the superscript T denotematrix transpose. Under these conditions and by assuming a constant detuning
Dx, wefind that equation (3) admits a non-trivial steady-state solution for the field amplitudes a1,2. By noting
that ∣ ∣µx as 2

2 under steady-state conditions (see equation (1c)), we find that the efficiency η is given by
∣ ∣ ∣ ∣h = a a2

2
2,p

2 with p again indicating the passive case with g g= < 01 2 . By evaluating the quantity ∣ ∣ ∣ ∣a a2
2

2,p
2

exactly at the onset of the linear  phase transition point, we obtain (see appendix for the general case):

( ) ( )h
g

g g= +
D

= - = - <J1
4

0 . 5
x

2
2

2 2 1

Formula (5) indicates that a larger nonlinear-induced detuningDx will decrease the enhancement factor η.
Since themechanical amplitude xs is proportional to the detuningDx and increases with laser power, we expect
the efficiency η to drop as the driving power increases. Note that the reasonwe explicitly consider the  point
is that at this point the ratio ∣ ∣ ∣ ∣a a2

2
2,p

2 becomes particularly simple. Formore details we refer to the appendix.
Having gained some qualitative inside into the problemby using this simplified linearized analysis, we now

turn to the discussion of the numerical steady-state results of the full nonlinear systemof equations (1).

3.1.2. Numerical evaluation of the steady-state solutions
Wenow consider the full numerical evaluation of the steady-state solutions of equations (1) under general
conditions. Figure 2(a) shows the enhancement factor η as a function of gD 0 in the  symmetric case where
g g g= - =1 2 0. In this scenario, the enhancement curve displays a plateauwith no sharp peaks and itsmaximal
value is found to occur at zero detuningD = 0. Note that the point ofmaximal enhancement (D = 0 and

g g= = -J 1 2) coincides with the exceptional point, at which the eigenfrequencies of the supermodes of the
linear system coalesce.

Infigure 2(b), the case of unbalanced gain/loss profile, g g<1 0 and g g= -2 0, is shown. In this case, two
peaks of different heights that correspond to two different laser detunings can be observed in the enhancement
curve. Notably, at the location of the positive detuning peak, the enhancement value even exceeds the one found
for the  symmetric case at resonance. Our analysis thus uncovers the important result that  symmetry is
not necessarily the optimumchoice for obtaining stronger optomechanical interactions as compared to a passive

Figure 2.Enhancement η as a function of the detuningΔ for various laser powersPin. In (a), g g=1 0 and g g= -2 0 whereas in (b)
g g= 0.81 0 and g g= -2 0. The red, blue, and green lines (from top to bottom) correspond to laser powers of m=P 1 Win , m7 W , and

m30 W , respectively. Other parameters as in table 1.

4
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system. These results clearly show that the enhancement of the optomechanical coupling coefficient is not
simply an outcome of increasing the optical gain in resonator a1, but rather a result of a complex interplay
between the non-Hermitian parameters of the system (optical gain and loss), detuning between the pump laser
and the resonance frequency of the optical cavities as well as the properties of the acousticmode. The asymmetry
observed for the broken  symmetry case (figure 2(b)) can be understood in the light of our simplified picture
of the previous sectionwhere the effective detuning introduced to the second cavity a2 due to optomechanical
interactionwas shown to introduce an asymmetry to the supermode frequencies and linewidths.

Surprisingly, as the driving laser power is increased, the enhancement values drop, indicating that the
difference in themechanical steady-state displacement between the active-passive (gain/loss) and passive-
passive (loss/loss) system vanishes. This feature is consistent with our simplified picture introduced in the
previous sectionwhere the nonlinearly induced detuningDx was shown to degrade the enhancement factor (see
equation (5)).

The resonant behavior of the enhancement curve (the appearance of two sharp peaks infigure 2(b)) at non-
zero detuning can occur not only when the optical gain in one cavity is unequal to the loss in the other, but also in
the case of equal gain and loss, provided that the inter-cavity coupling exceeds the gain and loss values. This
behavior is illustrated infigure 3, where the optical inter-cavity coupling J is variedwhilemaintaining balanced
gain and loss, g g g= - =1 2 0. For g>J 0, themaximal enhancement is no longer found at the excitation
resonanceD = 0 but rather shifts toD ¹ 0, in good agreementwith our earlier discussion as outlined in (i) in
the previous section (black dashed line infigure 3). That is, the sizable enhancement value at the exceptional
point (found on the dashedwhite line forΔ= 0) is outperformed by the enhancement obtained for g>J 0 at
the position of the supermode frequencies.

Finally, we consider the special case of zero-loss and zero-gain, i.e., g g= = 01 2 , shown infigure 4.Under
this condition, two different regimes for the steady-state solutions of xs can be identified depending the
excitation detuningΔ. In particular, within the range < D < D0 B, withD ~J 0.92 0.85 0.75B for laser
drivings of m1 7 30 W, three real solutions exist for xs. (DB denotes the branching detuning value, i.e., the
detuning at which the single real solution for xs branches into three real solutions.)Note that two of these
solutions diverge asD  0. Conversely, when > Dxs B, only one real solution exists. This is illustrated in
figure 4(a)where the diverging branches of the real solutions for xs are indicated by dotted lineswhereas the
finite ones are plottedwith solid lines. Figure 4(b) shows the enhancement corresponding to the steady-state
values of thefinite branch in (a) (evaluatedwith respect to a reference state with g g g= = - = -J1 2 0 as
before).

Considering figures 2(b) and 4(b), we see that the enhancement η of themechanical steady-state amplitude
obtained in a loss-gain balanced system as compared to a systemwith both cavities experiencing equal loss can be
outperformed by introducing non-zero detuning. In addition, even in the  symmetric case a larger
enhancement η can be obtainedwhen increasing the inter-cavity coupling J and tuning the laser frequency to the
supermode resonance frequency (see figure 3).

3.2. Stability analysis of the steady-state solutions
Wehave so far investigated only steady-state solutions. An important feature of these solutions is their stability.
In fact, any steady-state solution is dynamicallymeaningless unless it is stable.Herewe carry out the linear

Figure 3.Enhancement η as a function of the detuningΔ and the optical inter-cavity coupling J at a driving power of m=P 1 Win and
g g g= - =1 2 0. The horizontal white dashed line is a cross section corresponding to the parameters offigure 2(a). The dashed black
line shows the g-J 2

0
2 dependence of the eigenfrequencies found from the simplified picture in the previous section (equation (4)).

Other parameters as in table 1.
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stability analysis of the fixed points of equations (1) by linearizing equations (1) around the steady-state values
[33]. To do so, we start by rewriting equation (1c) as

˙

˙ ∣ ∣
w

=

=-G - +

x v

v v x
g

m
a

,

.m
2

2
2

By introducing a perturbation vector ( )
d d d d d d d=q a a a a x v, , , , ,r i r i1 1 2 2

T (see also [27]) over any particular
steady-state solution, substituting back in equations (1) and neglecting higher order terms, wefind

̇ 
d d= Mq q ,

where thematrix M is given by

( )

 

g
g

g

g

w

=

D
-D -

+ D

- - -D -

- -G

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

M

J

J

J gx ga

J gx ga

ga m ga m

0 0 0

0 0 0

0 0

0 0

0 0 0 0 0 1

0 0 2 2

. 6
i

r

r i m

1

1

2 s 2 ,s

s 2 2 ,s

2 ,s 2 ,s
2

Thematrix M is the Jacobianmatrix associatedwith perturbations of the steady state of the nonlinear systemof
equations (1); the subscript s denotes steady state and r i, denote real and imaginary parts, respectively, of the
amplitudes a1,2. The stability of steady-state solutions for any set of given design/excitation parameters depend
on the eigenvalues of M . In particular, a given steady-state solution is stable if all eigenvalues of M have negative
real parts (note that M is a function of the steady-state solutions and varies fromone to another). In that case,
this solution is represented by afixed point surrounded by an attracting region in phase space,meaning that all
trajectories in the vicinity of thisfixed point will converge into it. Otherwise, if some of the eigenvalues have
positive real parts, the steady state becomes unstable andmight exhibit limiting cycles or display chaotic
behavior [27, 33].

By constructing a linear stabilitymap for the fixed points of equations (1) as a function of the gain g > 01 and
detuningΔ parameters (seefigure 5), we uncover the following remarkable result: Steady-state solutions that
correspond to the  symmetric case g g g= - =1 2 0 are not stable. In other words,  symmetry is not
necessarily the optimal choice for enhancing optomechanical interactions at steady state. Instead, figure 5 shows
that stable steady-state solutions that exhibit significant enhancement (up to 200 fold) can be still achieved for
non-zero pumpdetuning and broken  symmetry. In particular, the gain valuesmust satisfy g g 0.71 0 in
order to guarantee stability over the full range of the considered detuning.Hence, the peak enhancement in the
case offigure 2(b), indicated by thewhite dashed line infigure 5, as well as that reported in [23] is indeed
misleading since it does not correspond to stable steady-state solutions. Aswewill show later, including gain
saturation effects can result in a stable steady-state solution even in the  symmetric case.

We conclude this section by noting that while linear stability analysis suffices to question the validity of
claimsmade on the basis of steady-state analysis alone, it does not providemuch information regarding the
dynamical behavior of the system andwhether it converges to a limit cycle or even becomes chaotic. In order to
explore the full behavior of the system,we numerically integrate the full temporal dynamics associatedwith
equations (1).

Figure 4. Steady-state amplitude xs (a) aswell as enhancement factor η (b) as a function of the detuningΔ for various laser powersPin
and g g= = 01 2 . The red, blue, and green lines (top to bottom in the right panel, bottom to top in the left panel) correspond to laser
powers of m=P 1 Win , m7 W , and m30 W, respectively. Dotted lines indicate real solutions that diverge asD  0. Other
parameters as in table 1.
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4.Nonlinear dynamics

In the previous section, we studied the stability properties of steady-state solutions associatedwith
optomechanical photonicmolecules having optical gain and loss profiles (seefigure 1).We have shown that in
the case of  symmetry (equal gain and loss) the phase spacefixed points are unstable.We also revealed that
steady-state solutions that exhibit significant enhancement in optomechanical interactions can be attained by
tailoring the pumpdetuning and the gain/loss profile (with unbalanced distribution). This analysis however
leaves several important questions unanswered: (1)What are the dynamics when the steady-state solutions are
unstable? (2)What is the effect of gain saturation?

In this sectionwe investigate the above posed questions. To do so, we begin by studying the temporal
evolution of the dynamical quantities ∣ ( )∣ ∣ ( )∣a t a t,1

2
2

2 and x(t) for the two different cases depicted infigure 2
( symmetry and unbalanced gain and loss, respectively)when the detuning is zero and for an input laser
power of m=P 1 Win . By integrating equations (1)numerically, wefind that, in the first case of  symmetric
gain and loss distributionwhere g g g= - =1 2 0, the optical intensities andmechanical displacement grow
exponentially as shown infigures 6(a) and (b) (Note thatwe do not study long-time dynamics subsequent to the
exponential growth, whichmight exhibit chaotic features [27]). In contrast, figures 6(c) and (d) show that for
unbalanced gain and loss, g g= 0.81 0 and g g= -2 0, the steady state is reached on a timescale of m~10 s.

While these results are consistent with stability analysis, it is important to note that in general, the
unbounded exponential growth in the first case cannot continue indefinitely. In fact, gain saturation
mechanisms [34] are expected to regulate these divergences.

In particular, a fullmodel should include a gain coefficient of the form ( ∣ ∣ )g + a a11 1
2

s
2 [34, 35]with as

being the gain saturation threshold, rather than just g1. By taking this effect into account, we find that the
divergentmechanical oscillation amplitude behavior infigure 6(b) indeed reaches a steady-state value. In
contrast to our previousfinding in the case of unsaturated gain, for appropriate gain saturation thresholdwe
nowobtain steady-state solutions even in the  symmetric case (g g= -2 1 andD = 0), with enhancement
factors ranging from h ~ 8 for =a 10s

3 to h ~ 340 for = ´a 3 10s
4 (other paramters are g g= =J1 0

and m=P 1 Win ).
Moreover, whenwe choose the parameters such that g g g g= - = D = -, 1.5 , 52 0 1 0 MHz and

m=P 1 Win , wefind two different dynamical regimes depending on the value of the gain saturation. In
particular, as shown infigure 7, whereas the system reaches a steady state when =a 10s

3, the dynamics
converges to a sustained oscillation reminiscent of an oscillator limit cycle for =a 10s

4. This featuremight
illustrate the importance of accounting for gain saturation effects in order to understand reportedmechanical
oscillatory dynamics [24].

Finally, in order to gainmore insight into the dynamics of themechanical degree of freedom in the presence
of an effective gainwith =a 10s

4, we evaluate themean values aswell as oscillation amplitudes as a function of
gain and detuning infigure 8. Interestingly, near resonant pumpingD = 0, themechanical oscillator always
relaxes towards a steady state. On the other hand, oscillatory behavior can occur for off-resonant driving; thus
highlighting the rich dynamics associatedwith these systems under different conditions.

Figure 5.Enhancement η as a function of the detuningΔ and the gain-to-loss ratio g g g gº1 2 1 0 at a driving power of m=P 1 Win .
All other parameters are shown in table 1. The black region indicates parameter regimeswhere steady-state solutions are not stable
according to linear stability analysis. Contours of equal enhancement are also shown. The horizontal white dashed line corresponds to
the parameters offigure 2(b).
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5. Conclusion anddiscussion

In conclusion, we have carried out a comprehensive study of the static and dynamic behavior of optomechanical
interaction in non-Hermitian photonicmolecules that support an acousticmode. Our steady-state analysis
demonstrates that the strength of the interaction between the photonic supermodes and themechanical
oscillators of an active (gain/gain) system as compared to a passive (loss/loss) system can be significantly
enhanced under different conditions for design and pumpparameters. Interestingly, we found that 
symmetry is not necessarily the optimal choice for achievingmaximum enhancement (comparedwith the
passive system). Instead, we have shown that pump frequency detuning can lead to higher enhancement values.

Furthermore, we have studied the linear stability properties of these systems andwe have shown that the
enhancement factors reported in the  symmetric case near the exceptional point correspond to unstable
solutions. In this regard, we have identified regions in parameter space that correspond to unbalanced optical
gain/loss distribution and laser detuningwheremuch stronger interactions (two orders stronger than the
passive cavities) can be still achieved for linearly stable solutions. In addition, we have also investigated the
dynamical evolution of the systemby numerically integrating the nonlinear equations. Our analysis revealed
that gain saturation effects play an important role in regulating the behavior of the otherwise exponentially
growing oscillations that correspond to unstable fixed points.Moreover, two distinct dynamical behaviors were
identified based on the physical and pumpparameters: stable fixed points and sustained oscillations.

Figure 6.Dynamics of the populations ∣ ( )∣a t1
2 (left column, solid red), ∣ ( )∣a t2

2 (left column, dashed blue) and themechanical
oscillator amplitude x(t) (right column, solid green). In (a) and (b), g g g= - =1 2 0 whereas in the (c), (d) g g= -2 0 and g g= 0.81 0.
The laser power is m=P 1 Win andD = 0 MHz; all other parameters as in table 1.Note the different scaling of the x and y axes.

Figure 7.Dynamics of the populations ∣ ∣a1
2 (left column, solid red), ∣ ∣a2

2 (left column, dashed blue) and themechanical oscillator
amplitude x(t) (right column, solid green). In (a) and (b), the saturation parameter =a 10s

3 whereas in (c), (d) =a 10s
4. In both

plots, g g g g= - = D = -, 1.5 , 5 MHz2 0 1 0 and m=P 1 Win ; all other parameters as in table 1.Note the different scaling of the y
axes.
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It is worth noting that in this workwe have focused on the classical aspects of non-Hermitian photonic
molecules that can exhibit EPs of order two [36] and demonstrated their rich behavior. It would be of interest to
investigate the behavior of similar optomechanical systems in photonic networks having higher order EPs [36].
Another interesting aspect is to explore the quantumproperties of these systems.While some quantum aspects
were discussed briefly in [23], proper treatment using left/right eigenvalue algebra of non-Hermitian
Hamiltonians is still lacking.We plan to carry out these investigations elsewhere.
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Appendix. Detailed discussion of the efficiencyη in the two-resonatormodel

In this appendixwe discuss the steady-state solutions of equation (3) inmore detail. Including laser detuningΔ,
the enhancement ∣ ∣ ∣ ∣h = a a2

2
2,p

2 reads as

( ( )) ( )( ( ) )
( ( )) ( )( ( ) )

( )h
g g g
g g g g

=
+ - D D + D + + D + D + D
+ - D D + D + + D + D + D

J J

J J

2

2
. A.1x x

x x

4 2
2
2

2
2 2

2
2 2

4 2
1 2 1

2 2
2
2 2

From this equation, two limits are readily obtained. That is, for large detuningΔ, the enhancement η goes as

⟶ ( )
∣ ∣

h
D ¥

1, A.2

in agreementwith figures 2 and 5.On the  point (g g= - = - <J 02 1 ),

( )h
g

= +
D

1
4

, A.3
x

2
2

2

which is equation (5) in themain text. Note that lettingD  ¥x independent of, e.g., the detuningΔ is
misleading because themechanical steady-state displacement xs does exhibit a detuning dependence in the full
model. However, the qualitative behavior of the enhancementwith transmitted laser power is captured even in
the simplemodel, which is whywe employ it for instructive purposes.
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