70 research outputs found
Graphic-based concept retrieval
Two ways of expressing concepts in the context of image retrieval are presented. One, Keypics, is on the side of an image owner, who wants the image itself to be found on the Web; the second, Trittico, is on the side of the image searcher. Both are based on the paradigm of human intermediation for overcoming the semantic gap. Both require tools capable of qualitative analysis, and have been experimented by using persistent homology
Classification of river morphology and hydrology to support management and restoration
The work leading to this paper has received funding from the European Union’s FP7 programme under Grant Agreement No. 282656 (REFORM
Prenylation Inhibition-Induced Cell Death in Melanoma: Reduced Sensitivity in BRAF Mutant/PTEN Wild-Type Melanoma Cells.
While targeted therapy brought a new era in the treatment of BRAF mutant melanoma, therapeutic options for non-BRAF mutant cases are still limited. In order to explore the antitumor activity of prenylation inhibition we investigated the response to zoledronic acid treatment in thirteen human melanoma cell lines with known BRAF, NRAS and PTEN mutational status. Effect of zoledronic acid on proliferation, clonogenic potential, apoptosis and migration of melanoma cells as well as the activation of downstream elements of the RAS/RAF pathway were investigated in vitro with SRB, TUNEL and PARP cleavage assays and videomicroscopy and immunoblot measurements, respectively. Subcutaneous and spleen-to-liver colonization xenograft mouse models were used to evaluate the influence of zoledronic acid treatment on primary and disseminated tumor growth of melanoma cells in vivo. Zoledronic acid more efficiently decreased short-term in vitro viability in NRAS mutant cells when compared to BRAF mutant and BRAF/NRAS wild-type cells. In line with this finding, following treatment decreased activation of ribosomal protein S6 was found in NRAS mutant cells. Zoledronic acid demonstrated no significant synergism in cell viability inhibition or apoptosis induction with cisplatin or DTIC treatment in vitro. Importantly, zoledronic acid could inhibit clonogenic growth in the majority of melanoma cell lines except in the three BRAF mutant but PTEN wild-type melanoma lines. A similar pattern was observed in apoptosis induction experiments. In vivo zoledronic acid did not inhibit the subcutaneous growth or spleen-to-liver colonization of melanoma cells. Altogether our data demonstrates that prenylation inhibition may be a novel therapeutic approach in NRAS mutant melanoma. Nevertheless, we also demonstrated that therapeutic sensitivity might be influenced by the PTEN status of BRAF mutant melanoma cells. However, further investigations are needed to identify drugs that have appropriate pharmacological properties to efficiently target prenylation in melanoma cells
Erythropoietin Improves the Survival of Fat Tissue after Its Transplantation in Nude Mice
Background: Autologous transplanted fat has a high resorption rate, providing a clinical challenge for the means to reduce it. Erythropoietin (EPO) has non-hematopoietic targets, and we hypothesized that EPO may improve long-term fat graft survival because it has both pro-angiogenic and anti-apoptotic properties. We aimed to determine the effect of EPO on the survival of human fat tissue after its transplantation in nude mice. Methodology/Principal Findings: Human fat tissue was injected subcutaneously into immunologically-compromised nude mice, and the grafts were then treated with either 20 IU or 100 IU EPO. At the end of the 15-week study period, the extent of angiogenesis, apoptosis, and histology were assessed in the fat grafts. The results were compared to vascular endothelial growth factor (VEGF)-treated and phosphate-buffered saline (PBS)-treated fat grafts. The weight and volume of the EPOtreated grafts were higher than those of the PBS-treated grafts, whose weights and volumes were not different from those of the VEGF-treated grafts. EPO treatment also increased the expression of angiogenic factors and microvascular density, and reduced inflammation and apoptosis in a dose-dependent manner in the fat grafts. Conclusions/Significance: Our data suggest that stimulation of angiogenesis by a cluster of angiogenic factors and decreased fat cell apoptosis account for potential mechanisms that underlie the improved long-term survival of fa
The Ras Antagonist, Farnesylthiosalicylic Acid (FTS), Decreases Fibrosis and Improves Muscle Strength in dy2J/dy2J Mouse Model of Muscular Dystrophy
The Ras superfamily of guanosine-triphosphate (GTP)-binding proteins regulates a diverse spectrum of intracellular processes involved in inflammation and fibrosis. Farnesythiosalicylic acid (FTS) is a unique and potent Ras inhibitor which decreased inflammation and fibrosis in experimentally induced liver cirrhosis and ameliorated inflammatory processes in systemic lupus erythematosus, neuritis and nephritis animal models. FTS effect on Ras expression and activity, muscle strength and fibrosis was evaluated in the dy2J/dy2J mouse model of merosin deficient congenital muscular dystrophy. The dy2J/dy2J mice had significantly increased RAS expression and activity compared with the wild type mice. FTS treatment significantly decreased RAS expression and activity. In addition, phosphorylation of ERK, a Ras downstream protein, was significantly decreased following FTS treatment in the dy2J/dy2J mice. Clinically, FTS treated mice showed significant improvement in hind limb muscle strength measured by electronic grip strength meter. Significant reduction of fibrosis was demonstrated in the treated group by quantitative Sirius Red staining and lower muscle collagen content. FTS effect was associated with significantly inhibition of both MMP-2 and MMP-9 activities. We conclude that active RAS inhibition by FTS was associated with attenuated fibrosis and improved muscle strength in the dy2J/dy2J mouse model of congenital muscular dystrophy
Spectral Log-Demons: Diffeomorphic Image Registration with Very Large Deformations
International audienceThis paper presents a new framework for capturing large and complex deformations in image registration and atlas construction. This challenging and recurrent problem in computer vision and medical imaging currently relies on iterative and local approaches, which are prone to local minima and, therefore, limit present methods to relatively small deformations. Our general framework introduces to this effect a new direct feature matching technique that finds global correspondences between images via simple nearest-neighbor searches. More specifically, very large image deformations are captured in Spectral Forces, which are derived from an improved graph spectral representation. We illustrate the benefits of our framework through a new enhanced version of the popular Log-Demons algorithm, named the Spectral Log-Demons, as well as through a groupwise extension, named the Groupwise Spectral Log-Demons, which is relevant for atlas construction. The evaluations of these extended versions demonstrate substantial improvements in accuracy and robustness to large deformations over the conventional Demons approaches
PROPER: global protein interaction network alignment through percolation matching
Background The alignment of protein-protein interaction (PPI) networks enables us to uncover the relationships between different species, which leads to a deeper understanding of biological systems. Network alignment can be used to transfer biological knowledge between species. Although different PI-network alignment algorithms were introduced during the last decade, developing an accurate and scalable algorithm that can find alignments with high biological and structural similarities among PPI networks is still challenging. Results In this paper, we introduce a new global network alignment algorithm for PPI networks called PROPER. Compared to other global network alignment methods, our algorithm shows higher accuracy and speed over real PPI datasets and synthetic networks. We show that the PROPER algorithm can detect large portions of conserved biological pathways between species. Also, using a simple parsimonious evolutionary model, we explain why PROPER performs well based on several different comparison criteria. Conclusions We highlight that PROPER has high potential in further applications such as detecting biological pathways, finding protein complexes and PPI prediction. The PROPER algorithm is available at http://proper.epfl.ch
Imaging analysis to quantitate the Interplay of membrane and cytoplasm protein dynamics
AbstractPlasma membrane proteins are extremely important in cell signaling and cellular functions. Protein expression and localization alter in response to various signals in a way that is dependent on cell type and niche. Compartmental quantification of the expression of particular proteins is a very useful means of understanding their role in cellular processes. Immunofluorescence staining is frequently used to investigate the distribution of proteins of interest. Here, we present an imaging method for quantifying the membrane to cytoplasm ratio (MCR) of proteins analyzed at single-cell resolution. This technique provides a robust quantification of membrane proteins and contributes new insights into membrane expression dynamics. We have developed a protocol that uses immunostaining to assess protein expression according to the fluorescent cellular distribution and to compute the MCR. The method was applied to measure the MCR of glucose transporter 4 (GLUT4) in response to insulin in 3T3-L1 cells, an in-vitro model for adipocyte function and adipogenesis. The results revealed informative changes in the subcellular localization of GLUT4 following insulin induction. MCR analysis is a powerful imaging tool that can be generally applied to membrane proteins to provide a rapid and efficient quantitative analysis of protein distribution and sub-cellular processes in cells.</jats:p
- …
