1,999 research outputs found
Ytterbium divalency and lattice disorder in near-zero thermal expansion YbGaGe
While near-zero thermal expansion (NZTE) in YbGaGe is sensitive to
stoichiometry and defect concentration, the NZTE mechanism remains elusive. We
present x-ray absorption spectra that show unequivocally that Yb is nearly
divalent in YbGaGe and the valence does not change with temperature or with
nominally 1% B or 5% C impurities, ruling out a valence-fluctuation mechanism.
Moreover, substantial changes occur in the local structure around Yb with B and
C inclusion. Together with inelastic neutron scattering measurements, these
data indicate a strong tendency for the lattice to disorder, providing a
possible explanation for NZTE in YbGaGe.Comment: 4 pages, 4 figure, supplementary inf
The Ge(001) (2 × 1) reconstruction: asymmetric dimers and multilayer relaxation observed by grazing incidence X-ray diffraction
Grazing incidence X-ray diffraction has been used to analyze in detail the atomic structure of the (2 × 1) reconstruction of the Ge(001) surface involving far reaching subsurface relaxations. Two kinds of disorder models, a statistical and a dynamical were taken into account for the data analysis, both indicating substantial disorder along the surface normal. This can only be correlated to asymmetric dimers.
Considering a statistical disorder model assuming randomly oriented dimers the analysis of 13 symmetrically independent in-plane fractional order reflections and of four fractional order reciprocal lattice rods up to the maximum attainable momentum transfer qz = 3c* (c* = 1.77 × 10−1 Å−1) indicates the formation of asymmetric dimers characterized by R>D = 2.46(5) Å as compared to the bulk bonding length of R = 2.45 Å. The dimer height of Δ Z = 0.74(15) Å corresponds to a dimer buckling angle of 17(4)°. The data refinement using anisotropic thermal parameters leads to a bonding length of RD = 2.44(4) Å and to a large anisotropy of the root mean-square vibration amplitudes of the dimer atoms (u112) 1/2 = 0.25 Å, (u222)1/2 = 0.14 Å, (u332)1/2 = 0.50 Å). We have evidence for lateral and vertical disp tenth layer below the surface
PLEASE SCROLL DOWN FOR ARTICLE
Publication details, including instructions for authors and subscription information
Resonant Inelastic X-Ray Scattering from Valence Excitations in Insulating Copper-Oxides
We report resonant inelastic x-ray measurements of insulating LaCuO
and SrCuOCl taken with the incident energy tuned near the Cu K
absorption edge. We show that the spectra are well described in a shakeup
picture in 3rd order perturbation theory which exhibits both incoming and
outgoing resonances, and demonstrate how to extract a spectral function from
the raw data. We conclude by showing {\bf q}-dependent measurements of the
charge transfer gap.Comment: minor notational changes, discussion of anderson impurity model
fixed, references added; accepted by PR
Quantum Monte Carlo calculation of Compton profiles of solid lithium
Recent high resolution Compton scattering experiments in lithium have shown
significant discrepancies with conventional band theoretical results. We
present a pseudopotential quantum Monte Carlo study of electron-electron and
electron-ion correlation effects on the momentum distribution of lithium. We
compute the correlation correction to the valence Compton profiles obtained
within Kohn-Sham density functional theory in the local density approximation
and determine that electronic correlation does not account for the discrepancy
with the experimental results. Our calculations lead do different conclusions
than recent GW studies and indicate that other effects (thermal disorder,
core-valence separation etc.) must be invoked to explain the discrepancy with
experiments.Comment: submitted to Phys. Rev.
Interaction of photons with plasmas and liquid metals: photoabsorption and scattering
Formulas to describe the photoabsorption and the photon scattering by a
plasma or a liquid metal are derived in a unified manner with each other. It is
shown how the nuclear motion, the free-electron motion and the core-electron
behaviour in each ion in the system determine the structure of photoabsorption
and scattering in an electron-ion mixture. The absorption cross section in the
dipole approximation consists of three terms which represent the absorption
caused by the nuclear motion, the absorption owing to the free-electron motion
producing optical conductivity or inverse Bremsstrahlung, and the absorption
ascribed to the core-electron behaviour in each ion with the Doppler
correction. Also, the photon scattering formula provides an analysis method for
experiments observing the ion-ion dynamical structure factor (DSF), the
electron-electron DSF giving plasma oscillations, and the core-electron DSF
yielding the X-ray Raman (Compton) scattering with a clear definition of the
background scattering for each experiment, in a unified manner. A formula for
anomalous X-ray scattering is also derived for a liquid metal. At the same
time, Thomson scattering in plasma physics is discussed from this general point
of view.Comment: LaTeX file: 18 pages without figur
Resolving the Ellsberg Paradox by Assuming that People Evaluate Repetitive Sampling
Ellsberg (1961) designed a decision experiment where most people violated the axioms of rational choice. He asked people to bet on the outcome of certain random events with known and with unknown probabilities. They usually preferred to bet on events with known probabilities. It is shown that this behavior is reasonable and in accordance with the axioms of rational decision making if it is assumed that people consider bets on events that are repeatedly sampled instead of just sampled once
Recommended from our members
Harnessing the Creative Potential of Consumers: Money, Participation and Creativity in Idea Crowdsourcing
Given the growing importance of innovation and consumer engagement, many firms are strongly interested in finding ways to encourage their consumers to generate creative new product ideas for them in their crowdsourcing initiatives. To that end, managers often use monetary rewards – one of the most commonly used managerial tools to stimulate desired behaviors. A critical question in this respect is whether the use of monetary rewards is effective in stimulating creativity and, if so, how large those rewards should be. This study aims to answer these questions. The results of an experiment suggest that introducing monetary rewards does not contribute to the number of new product ideas generated by a single consumer or the novelty of his/her ideas, and when the reward is relatively small it can even be harmful. Monetary rewards, however, are effective in encouraging widespread participation in crowdsourcing initiatives and improving the appropriateness of the new product ideas. As a whole, these findings take us a step further toward better understanding the motivational mechanisms of consumer creativity in new product ideation
Local lattice disorder in the geometrically-frustrated spin glass pyrochlore Y2Mo2O7
The geometrically-frustrated spin glass Y2Mo2O7 has been considered widely to
be crystallographically ordered with a unique nearest neighbor magnetic
exchange interaction, J. To test this assertion, we present x-ray-absorption
fine-structure results for the Mo and Y K edges as a function of temperature
and compare them to results from a well-ordered pyrochlore, Tl2Mn2O7. We find
that the Mo-Mo pair distances are significantly disordered at approximately
right angles to the Y-Mo pairs. These results strongly suggest that lattice
disorder nucleates the spin-glass phase in this material.Comment: 9 pages, 2 Postscript figures, Phys. Rev. B: Rapid, in pres
Chiral carbene–borane adducts: precursors for borenium catalysts for asymmetric FLP hydrogenations
The carbene derived from (1R,3S)-camphoric acid was used to prepare the borane adduct with Piers’ borane 7. Subsequent hydride abstraction gave the borenium cation 8. Adducts with 9-BBN and the corresponding (1R,3S)-camphoric acid-derived carbene bearing increasingly sterically demanding N-substituents (R = Me 9, Et 10, i-Pr 11) and the corresponding borenium cations 12–14 were also prepared. These cations were not active as catalysts in hydrogenation, although 9–11 were shown to undergo carbene ring expansion reactions at 50 °C to give species 15–17. The IBOX-carbene precursors 18 and 19 derived from amino alcohols (S)-valinol and (S)-tert-leucinol (R = i-Pr, t-Bu) were used to prepare borane adducts 20–23. Reaction of the carbenes 1,3-dimethylimidazol-2-ylidene (IMe), 1,3-di-iso-propylimidazol-2-ylidene (IPr) 1-benzyl-3-methylimidazol-2-ylidene (IBnMe), 1-methyl-3-phenylimidazol-2-ylidene (IPhMe) and 1-tert-butyl-3-methylimidazol-2-ylidene (ItBuMe) with diisopinocampheylborane (Ipc2BH) gave chiral adducts: (IMe)(Ipc2BH) 24, (IPr)(Ipc2BH) 25, (IBnMe)(Ipc2BH) 26, (IPhMe)(Ipc2BH) 27, and (ItBuMe)(Ipc2BH) 28. Triazolylidene-type adducts including the (10)-phenyl-9-borabicyclo [3.3.2]decane adduct of 1,3,4-triphenyl-1H-1,2,3-triazolium, rac-29 and the 9-BBN derivative of (S)-2-amino-2′-methoxy-1,1′-binaphthalene-1,2,3-triazolium 34a/b were also prepared. In catalytic studies of these systems, while several species were competent catalysts for imine reduction, in general, low enantioselectivities, ranging from 1–20% ee, were obtained. The implications for chiral borenium cation catalyst design are considered
- …
