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The development of DNA microarray technology has facilitated in-depth research into cancer
classification, and has made it possible to process thousands of genes simultaneously. Since not all
genes are crucial for classifying cancer, it is necessary to select informative genes which are associated
with cancer. Many gene selection methods have been investigated, but none is perfect. In this paper we
investigate methods of finding optimal informative genes for classification of gene expression profiles.
We propose a new gene selection method based on the forward selection method with regression anal-
ysis in order to find informative genes which predict cancer. The genes selected by this method tend to
have information about the cancer that does not overlap with the other genes selected. We have mea-
sured the sensitivity, specificity, and recognition rate of the selected genes with the k-nearest-neighbour
classifier for the colon cancer dataset and the lymphoma dataset. In most cases, the proposed method
produces better results than gene selection based on other feature selection methods, yielding a high
accuracy of 90.3% for the colon cancer dataset and 72% for the lymphoma dataset.

Keywords: Feature selection; Partial correlation; Cancer classification; Gene expression profiles

AMS Subject Classification: 68T10

1. Introduction

Microarray technology, which provides the expression patterns of thousands of genes
simultaneously under particular experimental environments, has become an essential tool in
cancer prediction and diagnosis, and computer-based analyses have been conducted to obtain
useful information using this technique [1, 2]. Many researchers have have also studied can-
cer prediction using microarrays with gene expression data [3, 4]. However, only the genes
associated with cancer are needed for prediction. Because some genes may have no function
in cancer, it is very important to select informative genes before classification.

There have been many studies of feature selection methods for cancer prediction. Feature
selection can be divided into the filtering approach and the wrapper approach based on evalua-
tion criteria [5]. The filtering method evaluates feature subsets based on intrinsic characteristics
of the data, whereas the wrapper method evaluates feature subsets based on the performance
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of the classifier. Usually, studies of gene selection for microarray data analysis focus on the
filtering method because of the computational deficiency of the wrapper method, and several
feature selection methods for selecting informative genes have been proposed [6]. However,
filtering methods based on gene rank do not take into account the partial correlations among
the selected genes because they only calculate the similarity between the target (cancer) and
the gene itself on a one-to-one basis. If the partial correlations of the selected genes are not
considered, the subset of the chosen genes can contain redundant information. Therefore, for
efficient classification, it is important to consider partial correlations of the selected genes.

In this paper we propose a novel filtering method based on forward selection in regression
analysis. This approach is different from previous methods because the genes are selected
by their partial correlations rather than by their ranks. Correlations among selected genes are
considered in order to minimize redundant information in the subset of selected genes [7].
Reducing the redundant information about the cancer in the selected genes helps to classify
the cancer. The selected genes are input into a classifier which is trained with this input to
adjust the result with the genes selected. Many classifiers have been used in cancer predic-
tion, including the multilayer perceptron [8], the support vector machine (SVM) [9], and
the k-nearest-neighbour [10]. We have used the k-nearest-neighbour classifier to verify the
proposed method with a colon cancer dataset and a lymphoma dataset of gene expression pro-
files. The results are compared with six representative filter-based feature selection methods.
We have used three measures (sensitivity, specificity, and recognition rate) to evaluate the
performance of the proposed method.

2. Background

2.1 DNA microarrays

DNA arrays consist of a large number of DNA molecules spotted in a systematic order on
a solid substrate. Depending on the diameter of each DNA spot on the array, arrays are
categorized as microarrays (diameter <250 μm) or macroarrays (diameter >300 μm). Arrays
on a small solid substrate are also referred to as DNA chips. This method is so powerful that
gene information can be obtained very rapidly, because hundreds of genes can be analysed
simultaneously on the DNA microarray.

There are two representative DNA microarray technologies: cDNA microarray technology
and oligonucleotide microarray technology. cDNA microarrays are composed of thousands of
individual DNA sequences printed in a high-density array on a glass microscope slide using
a robotic arrayer. High-density oligonucleotide microarrays [2, 11, 12] are produced using
spatially patterned light-directed combinatorial chemical synthesis, and contain hundreds of
thousands of different oligonucleotides on a small glass surface.

mRNA samples obtained by cDNA microarray technology are labelled using different fluo-
rescent dyes (red fluorescent dye Cy5 and green fluorescent dye Cy3). After the hybridization
of these samples with the arrayed DNA probes, the slides are imaged using a scanner which
makes fluorescence measurements for each dye. The log ratios of the intensities of the two
dyes are used as the gene expression data:

gene_expression = log2
Int(Cy5)

Int(Cy3)
(1)

where Int(Cy5) and Int(Cy3) are the intensities of the red and green dyes, respectively. Since a
DNA microarray comprises hundreds of genes, we can obtain genome-wide information very
rapidly.
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2.2 Related work

Because the amount of DNA microarray data is usually very large, it is essential to analyse it
efficiently. Not all of the thousands of genes whose expression levels are measured are needed
for classification. Because microarray data consist of large number of genes in small samples,
we need to select the informative genes for classification. This process is referred to as gene
selection [10].

Gene selection approaches can be classified as either filtering or wrapper methods based on
the evaluation criteria. There have been several studies of the wrapper method. Guyon et al. [13]
proposed elimination of recursive features using the SVM (SVM-RFE), and several groups
have used this method for gene selection [14–16]. Wrapper methods provide high accuracy and
outperform filtering methods, but most studies on gene selection for microarray data analysis
have focused on filtering methods because wrapper methods have a high computational cost
when combined with sophisticated algorithms such as SVMs [17].

Filtering methods have been used as the preprocessing step for classification. Hall [18]
and Golub et al. [19] used correlation-based feature selection methods, and Furey et al. [20]
used the signal-to-noise ratio based on information theory. Euclidean distance and the cosine
coefficient have also been used to calculate the similarity between genes, and information gain
and mutual information have been calculated for dependencies among genes [6].

In addition to gene subset selection methods, methods which derive new features from
original genes are available [21]. Nguyen and Rocke [22] compared partial least squares
with principal components analysis (PCA) which is a representative technique for reducing
dimensionality (number of features) [23]. A singular-value decomposition method has been
proposed for the same purpose [24]. This approach seems to provide higher performance in
some cases, but because features are extracted using transformation they cannot be analysed.

As mentioned earlier, most studies of gene selection adopt filtering methods. Statistical
correlation-based methods such as Pearson’s and Spearman’s correlation coefficients are most
commonly used to select informative genes by calculating the similarity between variables.
These methods select a variable which is highly correlated with the target variable in order
of rank. The correlation coefficient r varies from −1 to +1, so that the data distributed near
the line biased in the (+) direction will have positive coefficients, and the data near the line
biased in the (−) direction will have negative coefficients. Data near zero indicate that the
relationship between two variables is very weak. The coefficients rpearson and rspearman for two
vectors X and Y containing N elements are calculated as follows:

rpearson =
∑

XY − ( ∑
X

∑
Y/N

)
√(( ∑

X2 − ( ∑
X2/N

))( ∑
Y 2 − (( ∑

Y
)2

/N
)) (2)

rspearman = 1 − 6
∑

(Dx − Dy)2

N(N2 − 1)
(3)

where Dx and Dy are the rank matrices of X and Y , respectively.
The similarity between gene vectors X and Y can be thought of as a distance. Distance is a

measure of how far apart the two vectors are located, and the distance tells us how likely it is
that a certain gene belongs to a particular tumour class. If it is larger than a given threshold,
the gene belongs to tumour class; otherwise, it belongs to the normal class. In this paper, we
have adopted the cosine coefficient (rcosine) represented by the following equation:

rcosine =
∑

XY√∑
X2

∑
Y 2

. (4)
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We have also utilized the information gain and mutual information that are widely used in
many fields such as data mining. Information gain (IG) is defined by

IG =
∑ (

li

n
log

li

nl

+ ri

n
log

ri

nr

)
−

∑
i

(
li + ri

n

)
log

(
li + ri

n

)
(5)

where n is the total number of genes, nl (nr ) is the number of genes in the left (right) partition,
li (ri) is the number of genes belonging to class i in the left (right) partition, and c is the class
of the ith gene [25]. Mutual information (MI) is defined by

MI =
∑

j

∑
i

p(gi, cj ) log
P(gi, cj )

P (cj ) · P(gi)
(6)

where P(gi) and P(cj ) are the numbers of excited genes and unexcited genes, respectively.
Mutual information tells us the dependency relationship between two probabilistic variables

of events. If two events are completely independent, the mutual information is zero. The more
closely they are related, the higher the mutual information becomes [26]. Information gain is
used when the sample features are extracted by inducing the relationship between gene and
class by the presence frequency of the gene in the sample. Information gain measures the
goodness of the gene using its presence and absence within the corresponding class.

Each gene gi is from either a tumour sample or a normal sample. If we calculate the mean
μ and standard deviation σ from the distribution of gene expressions within their classes, the
signal-to-noise ratio SN(gi) of gene gi can be determined as follows [19]:

SN(gi) = μtumor(gi) − μnormal(gi)

σtumor(gi) + σnormal(gi)
. (7)

These filtering methods are widely used for gene selection, but have the disadvantage of
ignoring the interrelations between the selected genes. The selected subset of genes may con-
tain redundant information. Recently, some studies have considered this redundant information
among selected features [27, 28]. Gilad-Bachrach et al. [27] proposed a non-redundant feature
selection method based on a margin, i.e. a geometric measure which evaluates the confidence
of a classifier with respect to its decision. In this paper, a non-redundant feature selection
method based on regression analysis is proposed for gene selection.

3. Forward selection method

In regression analysis the partial correlations between the target variable and the variables
that explain the target well are analysed. Unlike correlation analysis, regression analysis can
predict or analyse the impact of one or more variables on another variable [29]. In this method,
one variable is chosen as the target, and independent variables which affect this target variable
are sought. If there is only one independent variable that explains the model, the model is
known as a linear regression model, and if there is more than one variable that explains the
model, it is known as a multiple regression model.

The basic concept of regression analysis is shown in figure 1. Although the amount of
information represented by B is larger than that of C, the regression model selects C first
because (A + C) covers a larger area than (A + B). The order of selecting genes is quite
different. The correlation analysis selects (A, B, D, C) in order of the size of the area they
cover. However, the regression analysis selects (A, C, D, B) in order of the size of exclusive
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Figure 1. Basic concept of correlation and regression analyses.

area, considering the area covered by the previously selected genes. The regression analysis
considers the relations between selected genes that minimize redundancy. When applying
regression analysis to gene expression profile data, we use a multiple regression model because
there are many genes which could affect the target variable, i.e. the presence of cancer in the
sample.

A linear regression model with a target variable y and independent variable x is given by

y = β0 + β1xi + εi, i = 1, 2, . . . , n (8)

and a multiple regression model with the same target variable y and multiple variables x is
given by

y = β0 + β1xli + β2x2i + β3x3i + εi, i = 1, 2, . . . , n (9)

where β0 and β1 are constants estimated by observed values of x and the target variable y,
and ε is estimated by normal distribution that has a mean of zero and a variance of σ 2.

The sum of the squared residuals is given by

SSE =
n∑

i=1

(yi − predicted yi)
2. (10)

A large value of SSE means that the regression line is predicted poorly. The total sum of
squares is given by

SSTO =
n∑

i=1

(yi, ȳ)2 (11)

where ȳ is the average of yi , and the distance SSR between SSTO and SSE is a useful measure
of the statistical performance of the prediction model:

SSR = SSTO − SSE. (12)

In a regression model, selecting the variables which explain the target variable depends on R2

value of the variables:

R2 = SSR

SSTO
. (13)

This equation means that y is explained by xas a ratio of R2. Therefore the variables that are
good at explaining the target variable are selected in order of their R2 values. The value of R2
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varies between 0 and 1. If the value of R2 reaches 1 at a certain point when some variable
x is added to the model, x is said to be a good variable that has a strong effect on the target
value. Regression models are verified by the F -test, and each F -value of a regression model
is calculated and evaluated as the fitness of that model. Selecting the model depends on fitness
as assessed by the F -value:

F = SSR/1

SSE/(n − 2)
. (14)

The label of each sample is set as a target variable of the model. The label is 1 if the sample
is from a tumour and 0 if it is normal. The algorithm of the proposed feature selection approach
using forward selection method is as follows.

G is a subset of selected genes and Max_R2 is the maximum value of R2 in the regression
models developed. Initially, there are N genes and we develop a regression model for each
gene; thus N regression models are obtained. Then we compute the R2 value of each model
and determine the Max_R2 value. If Max_R2 > 0 (which means that the model could explain
the target), the gene of that model is added to G, which is a subset of the selected genes.
If Max_R2 = 0 (which means that the model cannot explain the target), the algorithm is
terminated.

PROCEDURE

var N : total number of genes
G: set of selected genes
xG: genes in G

function Model(x): a function that applies gene x to a regression model as explained
above
Model(xG, x): a function that applies gene x to a regression model as explained
above and calculates R2 value of x

FindMax_ R2(x): a function that finds a gene whose R2 value is the largest
FindMax_ R2(xG, x): a function that finds a gene whose R2 value is the largest
considering partial correlations of all xG

UpdateG(x): a function that updates set G by adding a new element x

begin
for i = 1 to N

Model(xi)

FindMax_R2(xi) and UpdateG(xi)

do
for i = 1 to N

Model(xG,xi), xG �= xi

FindMax_R2(xG,xi) and UpdateG(xi)

while Max_R2(xi) > 0
end

During the iterations, we make new gene sets (geneselected + genenew), where geneselected is
a set of the genes selected up to the previous step and genenew is a gene selected in the current
step. Geneselected starts with an empty set, and new regression models with the new gene sets
are calculated to select the model with the largest R2 value:

y = β0 +
m∑

i=1

βigeneselected,i + βm+1genenew + ε (15)
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where m is the number of genesselected in the current step. Since this method selects the genes
according to the relations with the selected genes, it decreases redundant information about
the cancer and constructs an optimal gene set to predict cancer.

We have used the k-nearest-neighbour (KNN) classifier to classify the selected genes,
because only a few samples are available. Since there are not as many samples in the microarray
data as in other datasets, classifiers with parameter tuning, such as the neural network, experi-
ence difficulties in this domain. KNN is one of the most common methods of memory-based
induction. Given an input vector, KNN extracts the k closest vectors in the reference set based
on a similarity measure, and decides the label of input vector using the labels of the k nearest
neighbours. Pearson’s correlation can be used as the similarity measure. When we have an
input X and a reference set D = {d1, d2, . . . , dN }, the probability P(X, cj ) that X belongs to
class cj is defined as follows:

P(X, cj ) =
∑

di∈kNN

Sim(X, di)P (di, cj ) − bj (16)

where Sim(X, di) is the similarity between X and di , and bj is a bias term.

4. Experiments

4.1 Experimental environments

The proposed method for identifying significant genes is applied to a colon cancer dataset con-
taining 62 samples of colon epithelial cells taken from patients with colon cancer. Each sample
contains 2000 gene expression levels. Forty of the 62 samples are colon cancer samples and the
remainder are normal samples. Each sample was taken from either the tumour or the normal
healthy part of the colon of the same patient and measured using high-density oligonucleotide
arrays [3]. Half of the 62 samples were used as training data and the remaining 31 were used
as test data (further details available at: http://www.sph.uth.tmc.edu/hgc/default.asp).

We have also applied the proposed method to a lymphoma dataset consisting of 24 GC B-
like samples and 23 activated B-like samples. Each sample contains 4026 genes. Twenty-two
of the 47 samples were used as training data and the remainder were used as test data (further
details available at: http://genome-www.stanford.edu/lymphoma).

For evaluation, we have used sensitivity, specificity, and recognition rate. Sensitivity is
the percentage of samples that are recognized as cancer which are really cancer. Specificity
is the percentage of samples that are recognized as normal which are really normal.

4.2 Results for the colon dataset

Table 1 lists the genes selected by the forward selection method. We have selected 18 genes
with R2 > 0. The ID of the first gene selected is R8712 (MYOSIN HEAVY CHAIN, NON-
MUSCLE) which shows higher specificity than sensitivity or recognition rate (figure 2). This
gene provides useful information about normal samples, but not much information about
tumour samples. The third gene selected U3662 (Human Y-chromosome RNA recognition
motif protein gene) shows higher sensitivity than specificity (figure 2). This gene provides
useful information about tumour samples.

Table 2 summarizes R2 value, the F -value, and significant levels of the F -value of the
genes selected by the forward selection method. Gene493 is the first gene selected from 2000
genes, with the greatest R2 value in the regression models. This gene has an F -value of 50.33,
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Table 1. Colon cancer dataset: genes selected by the forward selection method.

Rank Gene ID Gene annotation

1 R8712 MYOSIN HEAVY CHAIN, NONMUSCLE (Gallus gallus)
2 U0202 Human pre-B-cell enhancing factor (PBEF) mRNA, complete cds
3 U3662 Human Y-chromosome RNA recognition motif protein (YRRM) gene,

exon 12, partial cds, subclone 7S2.
4 H6253 SPORE GERMINATION PROTEIN B2 (Bacillus subtilis)
5 T7102 Human (HUMAN)
6 H5607 GTP CYCLOHYDROLASE I (Homo sapiens)
7 T9947 GLUCOSE-6-PHOSPHATASE (Homo sapiens)
8 J0014 Human dihydrofolate reductase pseudo-gene (psi-hd1)
9 M2821 Homo sapiens low-density lipoprotein receptor (FH 10 mutant causing

familial hypercholesterolemia) mRNA, 3’ end
10 H2475 FRUCTOSE-BISPHOSPHATE ALDOLASE A (HUMAN)
11 R4985 COAGULATION FACTOR V PRECURSOR (Homo sapiens)
12 T9855 DNA-DIRECTED RNA POLYMERASES I AND III 16 KD

POLYPEPTIDE (Saccharomyces cerevisiae)
13 T4964 MYRISTOYLATED ALANINE-RICH C-KINASE SUBSTRATE

(Homo sapiens)
14 T6109 ENDOGLIN PRECURSOR (Homo sapiens)
15 M8473 Human autoantigen calreticulin mRNA, complete cds
16 H6439 CALCINEURIN B SUBUNIT ISOFORM 1 (Homo sapiens)
17 T7258 GLUTAMATE RECEPTOR 5 PRECURSOR (Homo sapiens)
18 H1506 PROTEIN KINASE CLK (Mus musculus)

Figure 2. Traces of three evaluation criteria of the genes selected by the forward selection method.

which is very high, and the significance level of the F -value is less than 0.0001, which is very
confident. The third gene selected gene has an F -value of 9.74, which is lower than the others,
and low confidence. Except for a few genes with a low F -value, most of the genes selected
by the forward selection method show quite high confidence level and provide important
information about the cancer.

Figure 2 shows the results obtained with the forward selection method. When only one gene
is selected, it performs very poorly (sensitivity 35.0%, specificity 73.0%, and recognition rate
48.4%). All three criteria are highest when the number of selected genes reaches about 15.
Genes with low R2 values, such as gene287, gene92, gene332, and gene858 in table 2, do
not provide much information for classifying the cancer. This shows that genes with low R2

values are less meaningful.
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Table 2. Colon cancer dataset: R2, F -value, and significant levels of the
genes selected by the forward selection method.

Rank Gene number Partial R2 F -value Pr > F

1 gene493 0.6344 50.33 <0.0001
2 gene1147 0.1549 20.58 <0.0001
3 gene1927 0.0559 9.74 0.0043
4 gene1587 0.057 15.15 0.0006
5 gene66 0.0322 12.29 0.0017
6 gene1427 0.0218 11.99 0.002
7 gene597 0.0157 12.94 0.0015
8 gene1919 0.0133 19.93 0.0002
9 gene1584 0.0053 11.94 0.0024

10 gene55 0.0031 9.74 0.0054
11 gene459 0.0028 14.74 0.0011
12 gene1340 0.0019 19.84 0.0003
13 gene2000 0.0007 13.09 0.0021
14 gene955 0.0004 10.26 0.0055
15 gene287 0.0002 8.78 0.0097
16 gene92 0.0002 11.68 0.0042
17 gene332 0.0001 14.83 0.002
18 gene858 0.0001 20.94 0.0006

In figure 3, the pattern of the genes selected by the forward selection method is different
and they have different expression levels on the same samples. They compensate each other
and reduce the redundancy. However, the genes selected by Pearson’s correlation coefficients
have a similar pattern and similar expression levels. They are the top three ranked genes which
have high correlation coefficients individually, but are not partially correlated with each other.
The result of hierarchical clustering of the selected genes by the forward selection method
does not show any distinguishable expression patterns (figure 4). This proves that the selected
genes have different patterns of expression levels and low redundancy. We estimate the three
measures for the selected genes and compare them to with those of the other six feature
selection methods. Forward, Pearson, Spearman, Cosine, IG, MI, and S2N stand for forward

Figure 3. Expression levels of the genes selected. The expression levels of the top three ranked genes have been
normalized as 0 to 1 and the figure shows the expression levels for all 31 training samples on these genes.
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Figure 4. Hierarchical clustering of gene expression data for the colon data using the top 18 genes selected by the
forward selection method.

Figure 5. Colon cancer dataset: recognition rates of the gene selection methods.

selection method, Pearson’s correlation coefficient, Spearman’s correlation coefficient, cosine
coefficient, information gain, mutual information, and signal-to-noise ratio, respectively.

We have conducted 15 runs by changing the value of k (1–15) in KNN and measured the
recognition rates of the seven gene selection methods. Figure 5 shows the average values and
the standard deviations for each case. The forward selection method has a higher average
recognition rate than the other methods.

Table 3 shows the results of the best performance when the genes are selected by the forward
selection method. We have determined the optimal number of genes from figure 2 (15 genes are
selected in all the cases with the colon dataset). The forward selection method performs best
performance in recognition rate and specificity, and shows a high performance in sensitivity.

Table 3. Colon cancer dataset: best results (%) of the evaluation measures by seven gene selection methods.

Forward Pearson Spearman Cosine IG MI S2N

Recognition rate 90.3 77.4 67.7 83.9 80.7 74.2 74.2
Sensitivity 95.0 75.0 100.0 95.0 95.0 90.0 90.0
Specificity 82.0 82.0 9.0 63.6 54.5 54.5 54.5
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Table 4. Colon cancer dataset: confusion matrix of selected genes by seven gene selection methods.

Forward Pearson Spearman Cosine

P P P P

0 1 0 1 0 1 0 1

0 9 2 0 9 2 0 1 10 0 7 4
A A A A

1 1 19 1 5 15 1 0 20 1 1 19

IG MI S2N

P P P

0 1 0 1 0 1

0 6 5 0 5 6 0 5 6
A A A

1 1 19 1 2 18 1 2 18

P, number of predicted samples; A, number of actual samples.

In Spearman’s correlation coefficient, the sensitivity is perfect (100%) and is better than the
forward selection method (95%), but the recognition rate (77.4%) and specificity (9%) are low
compared with the forward selection method. Spearman’s correlation coefficient classifies the
cancer samples very well, but its ability to classify normal samples is poor. The forward selec-
tion method classifies both tumour and normal samples well and shows a high performance
in all the criteria.

Table 4 shows a confusion matrix for the selected genes. The test sample predicted to be
tumour is denoted 1 and that predicted to be normal is denoted 0. The forward selection method
predicts 19 (19/20) samples as tumours which are actually tumours, and predicts nine (9/11)
samples as normal which are actually normal. The forward selection method performs well in
terms of both sensitivity and specificity.

Figure 6 shows receiver operating characteristic (ROC) curves for the selected genes for
all gene selection methods. FPF and TPF denote the false-positive fraction (the ratio of the
number of false-positive decisions to the number of actual positive data) and the true positive

Figure 6. Colon cancer dataset: ROC curves for the seven gene selection methods.
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Table 5. Lymphoma cancer dataset: best results (%) of the evaluation measures by seven gene selection methods.

Forward Pearson Spearman Cosine IG MI S2N

Recognition rate 72.0 68.0 48.0 60.0 64.0 48.0 64.0
Sensitivity 90.9 63.6 54.5 72.7 100.0 63.6 100.0
Specificity 57.2 71.4 42.9 50.0 64.3 64.3 64.3

Figure 7. Lymphoma cancer dataset: recognition rates for the gene selection methods.

fraction (the ratio of the number of true positive decisions to the number of actual negative
data), respectively. Here, positive means tumour and negative means normal. In the ROC curve,
the area under the plotted graph indicates the accuracy. In figure 6, the area of the forward
selection method is greatest.

Table 6. Lymphoma cancer dataset: confusion matrix of selected genes by seven gene selection methods.

Forward Pearson Spearman Cosine

P P P P

0 1 0 1 0 1 0 1

0 8 6 0 10 4 0 6 8 0 7 7
A A A A

1 1 10 1 4 7 1 6 5 1 3 8

IG MI S2N

P P P

0 1 0 1 0 1

0 5 9 0 5 9 0 5 9
A A A

1 0 11 1 4 7 1 0 11

P, number of predicted samples; A, number of actual samples.
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Figure 8. Lymphoma cancer dataset: ROC curves for the seven gene selection methods.

Table 7. Lymphoma cancer dataset: genes selected by the forward selection method.

Rank Gene number Gene annotation

1 gene1268 ∗CD10 = CALLA = Neprilysin = enkepalinase; Clone = 200814
2 gene544 ∗DRADA2a = dsRNA adenosine deaminase DRADA2a = RNA editing

enzyme; Clone = 1326908
3 gene824 (Unknown; Clone = 1370669)
4 gene2313 (Unknown UG Hs.29205 alpha integrin binding protein 63;

Clone = 1351211)
5 gene3125 (Unknown UG Hs.137428 ESTs, Highly similar to (defline not available

3249713) [Homo sapiens]; Clone = 1234298)
6 gene919 (Unknown UG Hs.117333 Homo sapiens mRNA for KIAA1093

protein, partial cds; Clone = 1337623)
7 gene667 (Unknown UG Hs.187585 ESTs; Clone = 825392)
8 gene2406 (Unknown UG Hs.100914 ESTs; Clone = 1335027)
9 gene233 *Unknown UG Hs.136819 ESTs; Clone = 1288950

10 gene3207 *Similar to DNA polymerase beta = DNA alkylation repair protein;
Clone = 1358191

4.3 Results for the lymphoma dataset

Only 10 genes (R2 > 0) were selected from the lymphoma cancer dataset. The sensitivity,
specificity, and recognition rate are shown in table 5. The forward selection method shows the
best performance in recognition rate (figure 7). It shows a better performance in sensitivity
than all the other methods except information gain and signal to noise ratio, and an average per-
formance in specificity. Considering all measures, the forward selection method, information
gain, and signal-to-noise ratio perform better than the other methods. In general the proposed
method provides the best performance overall, considering the results of both datasets.

Table 6 provides a confusion matrix of the 10 genes selected from the lymphoma dataset.
The forward selection method predicts 10 (10/11) samples as tumours which are actually
tumours, and predicts eight (8/14) samples as normal which are actually normal. Compared
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Table 8. Lymphoma cancer dataset: R2, F -value, and significant levels of
the genes selected by the forward selection method.

Rank Gene number Partial R2 F -value Pr > F

1 gene1268 0.8169 89.25 <0.0001
2 gene544 0.1045 25.25 <0.001
3 gene824 0.0577 49.82 <0.0001
4 gene2313 0.0118 22.28 0.0002
5 gene3125 0.0042 14.07 0.0017
6 gene919 0.0026 17.23 0.0009
7 gene667 0.0013 21.23 0.0004
8 gene2406 0.0006 22.58 0.0004
9 gene233 0.0002 11.89 0.0048

10 gene3207 0.0001 61.90 <0.0001

with information gain and signal-to-noise ratio, the forward selection method is superior in
terms of recognition rate, but not in terms of sensitivity and specificity.

Figure 8 shows the ROC curves of genes selected by all gene selection methods. As shown
in tables 5 and 6, the area under the ROC curve for the forward selection method is greatest,
although those of information gain and signal-to-noise ratio are almost as large.

Descriptions of the 10 genes selected from the lymphoma dataset are shown in table 7,
and R2, the F -value, and significant levels of the selected genes are shown in table 8.
All the selected genes have a high F -value and a high confidence level. The first selected
gene (gene1268) has a very high F -value (0.8169) which means that it gene explains the tar-
get (cancer) very well. The second selected gene (gene544) is related to adenosine deaminase
and the RNA editing enzyme.

5. Concluding remarks

We have proposed a forward selection method for gene selection for the classification of
cancer. The genes selected by the proposed method are able minimize redundant information
about cancer. Most other methods are based on one-to-one correlation and do not consider
correlations among the selected genes. However, the forward selection method selects genes
that are partially correlated among the selected genes, reducing the redundancy in the subset
of selected genes.

In the experiments, we used two different microarray datasets to show the utility of
the proposed method. The genes selected by the forward selection method have shown its
effectiveness in predicting cancer, with a high performance in both datasets. In the colon
dataset, 15 genes were identified as crucial in cancer classification. We measured the sensi-
tivity, specificity, and recognition rate of the selected genes using KNN and demonstrated the
performance of the proposed method. The genes selected by the forward selection method
performed better than genes selected by other selection methods. Only 10 genes were selected
in the lymphoma dataset, and the forward selection method performed better than the other
methods.

In future work we intend to apply the proposed method to larger datasets and to compare our
method with other non-redundant feature selection methods. In addition, studies of the genes
selected by the proposed method are required. The biological interpretation of the selected
genes is essential for better understanding of the results. Deciding the optimal number of genes
is also an interesting topic.
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