2,149 research outputs found
Exploring a rheonomic system
A simple and illustrative rheonomic system is explored in the Lagrangian
formalism. The difference between Jacobi's integral and energy is highlighted.
A sharp contrast with remarks found in the literature is pointed out. The
non-conservative system possess a Lagrangian not explicitly dependent on time
and consequently there is a Jacobi's integral. The Lagrange undetermined
multiplier method is used as a complement to obtain a few interesting
conclusion
Metaphoric coherence: Distinguishing verbal metaphor from `anomaly\u27
Theories and computational models of metaphor comprehension generally circumvent the question of metaphor versus “anomaly” in favor of a treatment of metaphor versus literal language. Making the distinction between metaphoric and “anomalous” expressions is subject to wide variation in judgment, yet humans agree that some potentially metaphoric expressions are much more comprehensible than others. In the context of a program which interprets simple isolated sentences that are potential instances of cross‐modal and other verbal metaphor, I consider some possible coherence criteria which must be satisfied for an expression to be “conceivable” metaphorically. Metaphoric constraints on object nominals are represented as abstracted or extended along with the invariant structural components of the verb meaning in a metaphor. This approach distinguishes what is preserved in metaphoric extension from that which is “violated”, thus referring to both “similarity” and “dissimilarity” views of metaphor. The role and potential limits of represented abstracted properties and constraints is discussed as they relate to the recognition of incoherent semantic combinations and the rejection or adjustment of metaphoric interpretations
The Sunyaev-Zel'dovich Infrared Experiment: A Millimeter-wave Receiver for Cluster Cosmology
Measurements of the Sunyaev-Zel'dovich (S-Z) effect towards distant clusters
of galaxies can be used to determine the Hubble constant and the radial
component of cluster peculiar velocities. Determination of the cluster peculiar
velocity requires the separation of the two components of the S-Z effect, which
are due to the thermal and bulk velocities of the intracluster plasma. The two
components can be separated practically only at millimeter (mm) wavelengths.
Measurements of the S-Z effect at mm wavelengths are subject to minimal
astrophysical confusion and, therefore, provide an important test of results
obtained at longer wavelengths. We describe the instrument used to make the
first significant detections of the S-Z effect at millimeter wavelengths. This
instrument employs new filter, detector, and readout technologies to produce
sensitive measurements of differential sky brightness stable on long time
scales. These advances allow drift scan observations which achieve high
sensitivity while minimizing common sources of systematic error.Comment: 19 pages, 15 postscript figures, LaTeX(aaspptwo.sty), ApJ(in press
Effect of Coulomb interactions on the physical observables of graphene
We give an update of the situation concerning the effect of electron-electron
interactions on the physics of a neutral graphene system at low energies. We
revise old renormalization group results and the use of 1/N expansion to
address questions of the possible opening of a low-energy gap, and the
magnitude of the graphene fine structure constant. We emphasize the role of
Fermi velocity as the only free parameter determining the transport and
electronic properties of the graphene system and revise its renormalization by
Coulomb interactions in the light of recent experimental evidence.Comment: Proceedings of the Nobel Symposium on graphene 2010, to appear as a
special issue in Physica Script
Zeta function determinant of the Laplace operator on the -dimensional ball
We present a direct approach for the calculation of functional determinants
of the Laplace operator on balls. Dirichlet and Robin boundary conditions are
considered. Using this approach, formulas for any value of the dimension, ,
of the ball, can be obtained quite easily. Explicit results are presented here
for dimensions and .Comment: 22 pages, one figure appended as uuencoded postscript fil
Spectral isolation of naturally reductive metrics on simple Lie groups
We show that within the class of left-invariant naturally reductive metrics
on a compact simple Lie group , every
metric is spectrally isolated. We also observe that any collection of
isospectral compact symmetric spaces is finite; this follows from a somewhat
stronger statement involving only a finite part of the spectrum.Comment: 19 pages, new title and abstract, revised introduction, new result
demonstrating that any collection of isospectral compact symmetric spaces
must be finite, to appear Math Z. (published online Dec. 2009
Local modes, phonons, and mass transport in solid He
We propose a model to treat the local motion of atoms in solid He as a
local mode. In this model, the solid is assumed to be described by the Self
Consistent Harmonic approximation, combined with an array of local modes. We
show that in the bcc phase the atomic local motion is highly directional and
correlated, while in the hcp phase there is no such correlation. The correlated
motion in the bcc phase leads to a strong hybridization of the local modes with
the T phonon branch, which becomes much softer than that obtained
through a Self Consistent Harmonic calculation, in agreement with experiment.
In addition we predict a high energy excitation branch which is important for
self-diffusion. Both the hybridization and the presence of a high energy branch
are a consequence of the correlation, and appear only in the bcc phase. We
suggest that the local modes can play the role in mass transport usually
attributed to point defects (vacancies). Our approach offers a more overall
consistent picture than obtained using vacancies as the predominant point
defect. In particular, we show that our approach resolves the long standing
controversy regarding the contribution of point defects to the specific heat of
solid He.Comment: 10 pages, 10 figure
Lifetimes of image-potential states on copper surfaces
The lifetime of image states, which represent a key quantity to probe the
coupling of surface electronic states with the solid substrate, have been
recently determined for quantum numbers on Cu(100) by using
time-resolved two-photon photoemission in combination with the coherent
excitation of several states (U. H\"ofer et al, Science 277, 1480 (1997)). We
here report theoretical investigations of the lifetime of image states on
copper surfaces. We evaluate the lifetimes from the knowledge of the
self-energy of the excited quasiparticle, which we compute within the GW
approximation of many-body theory. Single-particle wave functions are obtained
by solving the Schr\"odinger equation with a realistic one-dimensional model
potential, and the screened interaction is evaluated in the random-phase
approximation (RPA). Our results are in good agreement with the experimentally
determined decay times.Comment: 4 pages, 1 figure, to appear in Phys. Rev. Let
Further functional determinants
Functional determinants for the scalar Laplacian on spherical caps and
slices, flat balls, shells and generalised cylinders are evaluated in two,
three and four dimensions using conformal techniques. Both Dirichlet and Robin
boundary conditions are allowed for. Some effects of non-smooth boundaries are
discussed; in particular the 3-hemiball and the 3-hemishell are considered. The
edge and vertex contributions to the coefficient are examined.Comment: 25 p,JyTex,5 figs. on request
The grinch who stole wisdom
Dr. Seuss is wise. How the Grinch Stole Christmas (Seuss, 1957) could serve as a parable for our time. It can also be seen as a roadmap for the development of contemplative wisdom. The abiding popularity of How the Grinch Stole Christmas additionally suggests that contemplative wisdom is more readily available to ordinary people, even children, than is normally thought. This matters because from the point of view of contemplatives in any of the world's philosophies or religions, people are confused about wisdom. The content of the nascent field of wisdom studies, they might say, is largely not wisdom at all but rather what it's like to live in a particular kind of prison cell, a well appointed cell perhaps, but not a place that makes possible either personal satisfaction or deep problem solving. I believe that what the contemplative traditions have to say is important; they offer a different orientation to what personal wisdom is, how to develop it, and how to use it in the world than is presently contained in either our popular culture or our sciences. In order to illustrate this I will examine, in some detail, one contemplative path within Buddhism. Buddhism is particularly useful in this respect because its practices are nontheistic and thus avoid many of the cultural landmines associated with the contemplative aspects of Western religions
- …
