35,787 research outputs found

    Learning to Understand by Evolving Theories

    Full text link
    In this paper, we describe an approach that enables an autonomous system to infer the semantics of a command (i.e. a symbol sequence representing an action) in terms of the relations between changes in the observations and the action instances. We present a method of how to induce a theory (i.e. a semantic description) of the meaning of a command in terms of a minimal set of background knowledge. The only thing we have is a sequence of observations from which we extract what kinds of effects were caused by performing the command. This way, we yield a description of the semantics of the action and, hence, a definition.Comment: KRR Workshop at ICLP 201

    Process for the manufacture of carbon or graphite fibers

    Get PDF
    Carbon or graphite fibers are manufactured by heating polyacrylonitrile fiber materials in various solutions and gases. They are characterized in that the materials are heated to temperatures from 150 to 300 C in a solution containing one or more acids from the group of carbonic acids, sulfonic acids, and/or phenols. The original molecular orientation of the fibers is preserved by the cyclization that occurs before interlacing, which gives very strong and stiff carbon or graphite fibers without additional high temperature stretching treatments

    Jet evolution from weak to strong coupling

    Full text link
    Recent studies, using the AdS/CFT correspondence, of the radiation produced by a decaying system or by an accelerated charge in the N=4 supersymmetric Yang-Mills theory, led to a striking result: the 'supergravity backreaction', which is supposed to describe the energy density at infinitely strong coupling, yields exactly the same result as at zero coupling, that is, it shows no trace of quantum broadening. We argue that this is not a real property of the radiation at strong coupling, but an artifact of the backreaction calculation, which is unable to faithfully capture the space-time distribution of the radiation. This becomes obvious in the case of a decaying system ('virtual photon'), for which the backreaction is tantamount to computing a three-point function in the conformal gauge theory, which is independent of the coupling since protected by symmetries. Whereas this non-renormalization property is specific to the conformal N=4 SYM theory, we argue that the failure of the three-point function to provide a local measurement is in fact generic: it holds in any field theory with non-trivial interactions. To properly study a localized distribution, one should rather compute a four-point function, as standard in deep inelastic scattering. We substantiate these considerations with studies of the radiation produced by the decay of a time-like photon at both weak and strong coupling. We show that by computing four-point functions, in perturbation theory at weak coupling and, respectively, from Witten diagrams at strong coupling, one can follow the quantum evolution and thus demonstrate the broadening of the energy distribution. This broadening is slow when the coupling is weak but it proceeds as fast as possible in the limit of a strong coupling.Comment: 49 pages, 6 figure

    High temperature expansion applied to fermions near Feshbach resonance

    Full text link
    We show that, apart from a difference in scale, all of the surprising recently observed properties of a degenerate Fermi gas near a Feshbach resonance persist in the high temperature Boltzmann regime. In this regime, the Feshbach resonance is unshifted. By sweeping across the resonance, a thermal distribution of bound states (molecules) can be reversibly generated. Throughout this process, the interaction energy is negative and continuous. We also show that this behavior must persist at lower temperatures unless there is a phase transition as the temperature is lowered. We rigorously demonstrate universal behavior near the resonance.Comment: 4 pages, 4 figures (3 color, 1 BW), RevTeX4; ver4 -- updated references, changed title -- version accepted for publication in Physical Review Letter

    Rotational States of Magnetic Molecules

    Full text link
    We study a magnetic molecule that exhibits spin tunneling and is free to rotate about its anisotropy axis. Exact low-energy eigenstates of the molecule that are superpositions of spin and rotational states are obtained. We show that parameter α=2(S)2/(IΔ)\alpha = 2(\hbar S)^2/(I\Delta) determines the ground state of the molecule. Here S\hbar S is the spin, II is the moment of inertia, and Δ\Delta is the tunnel splitting. The magnetic moment of the molecule is zero at ααc\alpha \alpha_c. At α\alpha \to \infty the spin of the molecule localizes in one of the directions along the anisotropy axis.Comment: 4 pages, 3 figure

    Resumming large higher-order corrections in non-linear QCD evolution

    Full text link
    Linear and non-linear QCD evolutions at high energy suffer from severe issues related to convergence, due to higher order corrections enhanced by large double and single transverse logarithms. We resum double logarithms to all orders by taking into account successive soft gluon emissions strongly ordered in lifetime. We further resum single logarithms generated by the first non-singular part of the splitting functions and by the one-loop running of the coupling. The resulting collinearly improved BK equation admits stable solutions, which are used to successfully fit the HERA data at small-x for physically acceptable initial conditions and reasonable values of the fit parameters.Comment: 4 pages, 4 figures, based on talk given at Hard Probes 2015, 29 June - 3 July 2015, Montreal, Canad

    The design and implementation of a meaning driven data query language

    Get PDF
    We present the design and implementation of a Meaning Driven Data Query Language - MDDQL - which aims at the construction of queries through system made suggestions of natural language based query terms for both scientific application domain terms and operator/operation ones. A query construction blackboard is used where query language terms are suggested to the user in its preferred natural language and in a name centered way, together with their connotation. This helps in understanding the meaning of the terms and/or operators or operations to be included in the query. Furthermore, the construction of the query turns out to be an incremental refinement of the query under construction through semantic constraints, where only those domain language terms and/or operators/operations are suggested which result into meaningful combinations of query terms as related to the scientific application domain semantics. Therefore, semantically meaningless queries can be prevented during the query construction. Such a semantics aware mechanism is not available in conventional database query languages such as SQL, where one is allowed to execute a query calculating, for example, the average of numerical data values whereas they represent the codes of categorical values. Moreover, no familiarity with the semantics of complex database schemes or interpretation of the symbols (names of classes/tables/attributes, value codes) underlying the storage model, as well as familiarity with the syntax of a database specific query language are needed by the end-user. The constructed query can be submitted to the MDDQL query interpretation and transformation engine, where the corresponding SQL-query is generated and delegated to a DBMS (e.g., Oracle, MSAccess, SQL-Server). Generation of SQL-statements addressing NF2 data models such as those provided by the object-relational Oracle DBMS is also enabled. The query result is presented in a table based form where all storage model symbols are interpreted and can be exported for the usage with statistical software packages (e.g., SPSS)

    Resummation of Large Logarithms in the Rapidity Evolution of Color Dipoles

    Full text link
    Perturbative corrections beyond leading-log accuracy to BFKL and BK equations, describing the rapidity evolution of QCD scattering amplitudes at high energy, exhibit strong convergence problems due to radiative corrections enhanced by large single and double transverse logs. We identify explicitly the physical origin of double transverse logs and resum them directly in coordinate space as appropriate for BK equation, in terms of an improved local-in-rapidity evolution kernel. Numerical results show the crucial role of double-logarithmic resummation for BK evolution, which is stabilized and slowed down by roughly a factor of two.Comment: 6 pages, 4 figures; Proceedings of the XXIII International Workshop on Deep-Inelastic Scattering (27 April-May 1 2015, Dallas (USA)
    corecore