
 
 

 
 

University of Westminster Eprints 
http://eprints.wmin.ac.uk 
 
 

The design and implementation of a meaning driven 
data query language. 
 
Epaminondas Kapetanios1 
David Baer 
Paul Groenewoud 
P.Mueller 
Department of Computer Science, Swiss Federal Institute of 
Technology, Zurich, Switzerland 
 
1Epaminondas Kapetanios now works in the Harrow School of Computer 
Science, University of Westminster 
 

Copyright © [2004] IEEE.  Reprinted from Proceedings of the 14th International 
Conference on Scientific and Statistical Database Management, July 24-26, 2002, 
Edinburgh, Scotland, UK, pp.20-23. 
      
This material is posted here with permission of the IEEE. Such permission of the 
IEEE does not in any way imply IEEE endorsement of any of the University of 
Westminster's products or services.  Internal or personal use of this material is 
permitted.  However, permission to reprint/republish this material for advertising or 
promotional purposes or for creating new collective works for resale or redistribution 
must be obtained from the IEEE by writing to pubs-permissions@ieee.org.  By 
choosing to view this document, you agree to all provisions of the copyright laws 
protecting it.  
   
 

The Eprints service at the University of Westminster aims to make the research 
output of the University available to a wider audience.  Copyright and Moral Rights 
remain with the authors and/or copyright owners. 
Users are permitted to download and/or print one copy for non-commercial private 
study or research.  Further distribution and any use of material from within this 
archive for profit-making enterprises or for commercial gain is strictly forbidden.    
 

 

Whilst further distribution of specific materials from within this archive is forbidden, 
you may freely distribute the URL of the University of Westminster Eprints 
(http://eprints.wmin.ac.uk). 
 
In case of abuse or copyright appearing without permission e-mail wattsn@wmin.ac.uk. 

wattsn
top stamp

wattsn
Middle

wattsn
Bottom



The Design and Implementation of a Meaning Driven Data Query Language

E. Kapetanios, D. Baer, P. Groenewoud, P. Mueller
Dept. of Computer Science

Swiss Federal Institute of Technology
Zurich, Switzerland

kapetanios@inf.ethz.ch

Abstract

We present the design and implementation of a Mean-
ing Driven Data Query Language - MDDQL - which aims
at the construction of queries through system made sugges-
tions of natural language based query terms for both scien-
tific application domain terms and operator/operation ones.
A query construction blackboard is used where query lan-
guage terms are suggested to the user in its preferred nat-
ural language and in a name centered way, together with
their connotation. This helps in understanding the meaning
of the terms and/or operators or operations to be included
in the query. Furthermore, the construction of the query
turns out to be an incremental refinement of the query un-
der construction through semantic constraints, where only
those domain language terms and/or operators/operations
are suggested which result into meaningful combinations of
query terms as related to the scientific application domain
semantics. Therefore, semantically meaningless queries
can be prevented during the query construction. Such a
semantics aware mechanism is not available in conven-
tional database query languages such as SQL, where one
is allowed to execute a query calculating, for example, the
average of numerical data values whereas they represent
the codes of categorical values. Moreover, no familiarity
with the semantics of complex database schemes or inter-
pretation of the symbols (names of classes/tables/attributes,
value codes) underlying the storage model, as well as fa-
miliarity with the syntax of a database specific query lan-
guage are needed by the end-user. The constructed query
can be submitted to the MDDQL query interpretation and
transformation engine, where the corresponding SQL-query
is generated and delegated to a DBMS (e.g., Oracle, MS-
Access, SQL-Server). Generation of SQL-statements ad-
dressing NF2 data models such as those provided by the
object-relational Oracle DBMS is also enabled. The query
result is presented in a table based form where all storage
model symbols are interpreted and can be exported for the

usage with statistical software packages (e.g., SPSS).

1. Motivation

Query languages as provided by database management
systems, e.g., SQL, are mainly designed for program-
mers. Therefore, when end-users need to pose queries to
a database, it is required that they have a substantial knowl-
edge of syntax formalisms and the storage model seman-
tics in order to formulate meaningful queries. The problem
becomes more acute when scientific application domains
or experiments are considered which address a large num-
ber of parameters (large database schemes). Moreover, the
needs of formulating queries by using the familiar scientific
terminology as expressed in their familiar natural language
posed additional requirements for the design and implemen-
tation of the query language for accessing well-structured
data from data repositories.

In order to meet these requirements, the implemented
system aims at assisting the domain scientist to construct
a query through system made suggestions of terms from
the MDDQL vocabulary, which consists of both applica-
tion domain and operational terms. Application domain
terms are provided by the application ontology. The latter
refers to an abstract model of the phenomena characterizing
the particular application domain, i.e., hospitalisation based
treatment of myocardial infarction, as well as the relevant
concepts and the constraints on their use [12, 13]. Further-
more, the terms of the domain ontology are mapped to the
storage model symbols standing for classes/tables, attributes
and values.

All MDDQL vocabulary terms can be specified in words
from more than one natural language. This is also appli-
cable to their informal definition or connotation. The sys-
tem made suggestions of terms, as provided by an infer-
ence engine, takes into consideration not only the semantic
constraints as related to the application ontology but also to

Proceedings of the 14th International Conference on Scientific and Statistical Database Management (SSDBM’02) 
1099-3371/02 $17.00 © 2002 IEEE 



the operational terms. In other words, since no learning of
a query language syntax is requested in order to construct
an ad-hoc query, the incremental construction of the query
takes place through end-user choices from those system in-
ferred subsets of vocabulary terms which are semantically
consistent with the set of terms already considered in the
query. Distinction among homonyms such as medication is,
therefore, enabled through the context of the term given ei-
ther by its relationships with other terms or the underlying
informal definition of the term.

This mechanism aims at assisting in constructing mean-
ingful queries in terms of a) including only those well–
understood terms - natural language words versus acronyms
and codes - within the query and, therefore, e.g., only rele-
vant relations, attributes and/or values at the storage model,
b) applying those operations or operators which are con-
sistent with the application domain semantics, e.g., only
the equals operator would be suggested when a categor-
ical value is considered within a restriction clause or the
average operation will be excluded from suggestion when
an attribute is classified as categorical variable, c) avoiding
combination of mutually exclusive query terms such that
they might lead to an empty set as a query result (unnec-
essary execution of query), d) providing a natural language
based interpretation of the values as included in the query
result.

The demonstration aims at showing how it is possible
to construct queries by having the system driving the end-
user to the construction of ad–hoc meaningful queries, i.e.,
queries which comply with the application domain seman-
tics. Thereby, an object-relational database schema with
approximately 120 attributes referring to the treatment of
acute myocardial infarctions in Swiss hospitals will be
used. The generation of the query result succeeds in that
the constructed query is transformed at the server side into
SQL-statements. Notice that subqueries addressing nested
tables are also taken into account.

Given the mapping from the natural language words,
in which the MDDQL query has been constructed, to
acronyms and codes of the storage model, the same query
result will be retrieved and sent to the client, even if the
query has been constructed by using words from differ-
ent natural languages. Presentation of the query result is
given in a tuple-oriented form, where data items can be
set-oriented values. The query result can be exported as
an ASCII file with user specified delimiters such that the
query result data can be imported into statistical software
packages and/or front-end databases such as SPSS, Excel,
MS-Access, etc. In such a case, multi-valued attributes are
exported after having been flattened. All elements included
in the query result can be viewed interchangeably, either
by using the natural language based interpretations or the
acronyms and codes as in the database.

Related work: The system does not make use of any dia-
grammatic presentation of conceptual schemes or any visual
formalisms, and, therefore, contrasts with the approaches
taken by visual query languages [2, 3, 7, 8, 9, 6] and sys-
tems (VQSs). They are mainly classified into form-based
such as [9], diagrammatic such as [7] and iconic VQSs [8]
according to the representation of the domain of interest for
query formulation and/or for the query result. Some hybrid
systems such as [6] have also been proposed. In all these
high-level querying approaches, the application domain se-
mantics based construction of a query, as described above,
does not happen to be of major concern. In addition, the
end–user is expected to make him/herself familiar with vi-
sual formalisms instead of syntax formalisms.

Semantics have been extensively used as a user guid-
ing mechanism in interactive query formulation techniques.
They are either database schema bound in order to pro-
vide incremental or associative query answering [15, 14],
or they are ontology driven [11, 10, 1]. The goal of [15, 14]
is to provide an end-user with context-sensitive assistance
based on database modeling and probabilistic reasoning
techniques combined with linguistic-based ones. To this
extend, query formulation takes place in terms either of
query completion of incomplete queries or suggestions of
further predefined queries to reach a complex query goal
[5, 4]. To this extent, no advanced semantics in terms of
an advanced vocabulary or application ontology is user as a
guiding mechanism for the construction of the query.

Instead, an ontology driven mechanism is provided by
[11, 10, 1] which enables the clarification of the semantics
of terms, such as in biology, to be used for the construc-
tion of the query. However, the main focus of the query
construction technique is the exploration of taxonomies or
classification structures rather than a querying mechanism
capable of providing the expressive power as known by con-
ventional database specific query languages. To this extent,
usage of logical, comparison or statistical operators is not
enabled. Moreover, semantic inconsistencies among terms
cannot be prevented.

2. The MDDQL System Components

The system consists of the following components:

1. the MDDQL query construction blackboard (a snap-
shot is given by figure 1) used as the user inter-
face, where the query is being assembled through
user/system interaction in terms of requested sugges-
tions of query terms and their signification as re-
lated to the specific application domain. The underly-
ing data structure which gets manipulated through the
user/system interaction on the blackboard and at the
client site is the MDDQL query tree. The nodes of the

Proceedings of the 14th International Conference on Scientific and Statistical Database Management (SSDBM’02) 
1099-3371/02 $17.00 © 2002 IEEE 



Figure 1. An example of a potential query

query tree are conceived as interconnected objects car-
rying on additional semantic knowledge needed by the
interpretation/transformation component.

2. the terminology base which acts as the representation
platform for the MDDQL query terms (vocabulary) to-
gether with their constraints on use which constitute
the application ontology.

3. the MDDQL inference engine in order to respond to
the user’s requests for meaningful suggestions of query
terms during query construction. The inference engine
is contacted each time suggestions for the considera-
tion of semantically consistent subsets of query terms
are requested by the end-user in order to refine the
query. The suggestions can be posed from selection
menus which can be activated from each term already
included within the query under construction. The in-
ferences rely on both the semantics as represented by
the terminology base and the current set of already
considered query terms.

4. the MDDQL query tree interpretation and transforma-
tion component, where each submitted query in terms
of an MDDQL query tree is transformed into an SQL-
query.

The system relies on a three-tier system architecture.
Assuming that the database resides at the back–end layer,
components (2) and (4) are assigned to the middle layer
whereas components (1) and (3) are assigned to the front-
end layer (client site). However, a query construction ses-
sion at the client site makes use of component (2) a copy of
which is downloaded from the application server at the mid-
dle layer. Therefore, there is no network communication
overhead between inference engine and terminology server
during a query construction session.

Moreover, given this system architecture, there is a shift
of the query construction logic from the middle layer to the
clients. The application server deals only with the query
transformation logic (component (4)). Given also that all
system components are implemented in the Java program-
ming language, the components (1) and (3) as needed for the

Proceedings of the 14th International Conference on Scientific and Statistical Database Management (SSDBM’02) 
1099-3371/02 $17.00 © 2002 IEEE 



interactive query construction sessions can be installed as a
software package on any client running under various op-
erating systems such as Windows 98/NT/2000, Linux, So-
laris, HP-AIX, etc.

Furthermore, maintenance of the terminology base is
done at the application server independently of the interac-
tive query construction software once installed at the client
site. Any changes to the terminology space become imme-
diately visible to all clients having installed the query con-
struction components. Hence, the query vocabulary can be
adapted dynamically according to changes of the applica-
tion domain semantics.

2.1 An overview of the SQL generation algorithm

Since the submitted query takes the form of an MD-
DQL query tree which carries on all the semantic infor-
mation needed for the mappings between natural language
words and symbols to be used within the SQL statement,
the generation algorithm has been implemented on the ba-
sis of traversing with a depth–first strategy the submitted
MDDQL query tree. Thereby, the inference of the tokens
and/or clauses to be put into the select, from and where
slots relies a) upon the nature of the visited query nodes as
well as the nature of the visited path, b) upon the nature of
the corresponding storage model symbols, i.e., standing for
a table, an attribute or attribute path (nested tables), a value
or set of values.

Notice that the MDDQL query nodes are, mainly, clas-
sified as Entity Set, Relationhip, Property and Value nodes.
Following constraints hold for the structure of an MDDQL
query tree: an Entity Set node might have edges to either
one or more Entity Set nodes, or one or more Relationhip
nodes, or one or more Property nodes. A Relationhip node
might have edges to one or more Entity Set nodes, or one or
more Property nodes. A Property node might have edges to
either one or more Property nodes, or to one or more Value
nodes. Finally, a Value node might have edges to one or
more Value nodes.

Currently, it is possible to infer JOIN operations with or
without additional tables implementing a relationship. This
also holds for tables used for classification structures. A dis-
tinction is made by the algorithm when categorical values
are used for classification within the same table (no JOIN
operation needed). Moreover, subqueries referring to nested
tables such as those used for multi-valued attributes are also
generated. This is crucial when AND-connected restrictions
on values coming from nested tables are addressed.

Acknowledgments: We would like to thank Prof. Dr. M.
Norrie and Prof. Dr. H. Hinterberger for their support to
make this system reality.

References

[1] S. Bechhofer, R. Stevens, G. Ng, A. Jacoby, and C. Goble.
Guiding the User: An Ontology Driven Interface. In N. W.
Paton and T. Griffiths, editors, Proc. User Interfaces to Data
Intensive Systems (UIDIS99), pages 158–161, Edinburgh,
September 1999. IEEE Press.

[2] J. Cardiff, T. Catarci, and G. Santucci. Semantic query pro-
cessing in the VENUS environment. International Jour-
nal of Cooperative Information Systems, 6(2):151–192, June
1997.

[3] T. Catarci, M. Costabile, S. Levialdi, and C. Batini. Visual
query systems for databases: A survey. Journal of Visual
Languages and Computing, 8(2):215–260, April 1997.

[4] W. Chu and Q. Chen. A Structured Approach for Cooper-
ative Query Answering. IEEE Transactions on Knowledge
and Data Engineering, 6(5):738–749, October 1994.

[5] W. W. Chu, H. Yang, K. Chiang, M. Minock, G. Chow, and
C. Larson. CoBase: A scalable and extensible cooperative
information system. Journal of Intelligent Information Sys-
tems, 1996.

[6] L. Cinque, S. Levialdi, and F. Ferloni. An expert visual
query system. Journal of Visual Languages and Computing,
2:101–113, 1991.

[7] Y. Dennebouy, M. Anderson, A. Auddino, Y. Dupont,
E. Fontana, M. Gentile, and S. Spaccapietra. SUPER: Visual
interfaces for object + relationship data models. Journal of
Visual Languages and Computing, 6:74–99, 1995.

[8] A. Massari, S. Pavani, L. Saladini, and P. Chrysanthis. QBI:
Query by icons. In Proc. of the ACM SIGMOD Conf. on
Management of Data, page 477, San Jose, USA, 1995. ACM
Press.

[9] G. Ozsoyoglou and H. Wang. Example-based graphical
database query languages. COMPUTER, 26(5):25–38, May
1993.

[10] N. Paton, R. Stevens, P. Baker, C. Goble, S. Bechhofer, and
A. Brass. Query Processing in the TAMBIS Bioinformatics
Source Integration System. In Proc. 11th Int. Conf. on Sci-
entific and Statistical Databases (SSDBM), pages 138–147
1999. IEEE Press, 1999.

[11] R. Stevens, P. Baker, S. Bechhofer, G. Ng, A. Jacoby, N. Pa-
ton, and C. Goble. TAMBIS: Transparent Access to Mul-
tiple Bioinformatics Information Sources. Bioinformatics,
16(2):184–186, 2000.

[12] R. Studer, R. Benjamins, and D. Fensel. Knowledge Engi-
neering: Principles and Methods. DKE, 25(1-2):161–197,
1998.

[13] M. Uschold and M. Grueninger. Ontologies: Principles,
Methods and Applications. Knowledge Engineering Review,
2, 1996.

[14] G. Zhang. Interactive Query Formulation Techniques for
Databases. PhD thesis, University of California, Los Ange-
les, 1998.

[15] G. Zhang, W. W. Chu, F. Meng, and G. Kong. Query Formu-
lation from High-Level Concepts for Relational Databases.
In N. Paton and T. Griffiths, editors, Proc. User Interfaces to
Data Intensive Systems, UIDIS 99, pages 64–74, Edinburgh,
Scotland, September 1999. IEEE Computer Society Press.

Proceedings of the 14th International Conference on Scientific and Statistical Database Management (SSDBM’02) 
1099-3371/02 $17.00 © 2002 IEEE 


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


