3,254 research outputs found

    Discovery of new Milky Way star cluster candidates in the 2MASS point source catalog III. Follow-up observations of cluster candidates in the Galactic Center region

    Full text link
    This paper is part of a project to search the inner Milky Way for hidden massive clusters and to address the question of whether our Galaxy still forms clusters similar to the progenitors of the present-day globular clusters. We report high angular resolution deep near-infrared imaging of 21 cluster candidates selected from the catalogues of Bica et al. (2003) and Dutra et al.(2003) in a region around the Galactic Center. These catalogues were created from visual inspection of the 2MASS images. Seven objects appear to be genuine clusters, and for these objects we present estimates of extinction, distance and in some cases age and mass. Our estimated masses range from 1200 to 5500 solar masses. These clusters are thus significantly smaller than any Galactic globular cluster, and indicate that the formation of massive young clusters such as Arches and Quintuplet is not common in the present-day Milky Way. The remaining 14 objects are either not clusters or cannot be classified based on our data.Comment: 8 pages, 19 figures, accepted for publication in A&

    Restrictions over two-dimensional gauge models with Thirring-like interaction

    Full text link
    Some years ago, it was shown how fermion self-interacting terms of the Thirring-type impact the usual structure of massless two-dimensional gauge theories [1]. In that work only the cases of pure vector and pure chiral gauge couplings have been considered and the corresponding Thirring term was also pure vector and pure chiral respectively, such that the vector (or chiral) Schwinger model should not lose its chirality structure due to the addition of the quartic interaction term. Here we extend this analysis to a generalized vector and axial coupling both for the gauge interaction and the quartic fermionic interactions. The idea is to perform quantization without losing the original structure of the gauge coupling. In order to do that we make use of an arbitrariness in the definition of the Thirring-like interaction.Comment: 9 pages, no figure

    Evaluation of SIR-A (Shuttle Imaging Radar) images from the Tres Marias region (Minas Gerais State, Brazil) using derived spatial features and registration with MSS-LANDSAT images

    Get PDF
    Two image processing experiments are described using a MSS-LANDSAT scene from the Tres Marias region and a shuttle Imaging Radar SIR-A image digitized by a vidicon scanner. In the first experiment the study area is analyzed using the original and preprocessed SIR-A image data. The following thematic classes are obtained: (1) water, (2) dense savanna vegetation, (3) sparse savanna vegetation, (4) reforestation areas and (5) bare soil areas. In the second experiment, the SIR-A image was registered together with MSS-LANDSAT bands five, six, and seven. The same five classes mentioned above are obtained. These results are compared with those obtained using solely MSS-LANDSAT data. The spatial information as well as coregistered SIR-A and MSS-LANDSAT data can increase the separability between classes, as compared to the use of raw SIR-A data solely

    Perturbative bosonization from two-point correlation functions

    Get PDF
    Here we address the problem of bosonizing massive fermions without making expansions in the fermion masses in both massive QED2QED_2 and QED3QED_3 with N N fermion flavors including also a Thirring coupling. We start from two point correlators involving the U(1) fermionic current and the gauge field. From the tensor structure of those correlators we prove that the U(1) current must be identically conserved (topological) in the corresponding bosonized theory both in D=2 and D=3 dimensions. We find an effective bosonic action which reproduces those two point correlators and from such action we obtain a map for the Lagrangian density ψˉr(i/m)ψr\bar{\psi}^{r} (i \partial / - m){\psi}^{r} in terms of the corresponding bosonic field in both dimensions. This map is nonlocal but it is independent of the eletromagnetic and Thirring couplings, at least in the quadratic approximation for the fermionic determinant

    Estabelecimento In Vitro de Erva-Mate (Ilex paraguariensis St. Hil.).

    Get PDF
    bitstream/item/31493/1/comunicado-215.pd

    Quadratic Effective Action for QED in D=2,3 Dimensions

    Get PDF
    We calculate the effective action for Quantum Electrodynamics (QED) in D=2,3 dimensions at the quadratic approximation in the gauge fields. We analyse the analytic structure of the corresponding nonlocal boson propagators nonperturbatively in k/m. In two dimensions for any nonzero fermion mass, we end up with one massless pole for the gauge boson . We also calculate in D=2 the effective potential between two static charges separated by a distance L and find it to be a linearly increasing function of L in agreement with the bosonized theory (massive Sine-Gordon model). In three dimensions we find nonperturbatively in k/m one massive pole in the effective bosonic action leading to screening. Fitting the numerical results we derive a simple expression for the functional dependence of the boson mass upon the dimensionless parameter e^{2}/m .Comment: 10 pages, 2 figure
    corecore